お知らせ 2023年度・2024年度 学生員 会費割引キャンペーン実施中です
お知らせ 技術研究報告と和文論文誌Cの同時投稿施策(掲載料1割引き)について
お知らせ 電子情報通信学会における研究会開催について
お知らせ NEW 参加費の返金について
電子情報通信学会 研究会発表申込システム
講演論文 詳細
技報閲覧サービス
[ログイン]
技報アーカイブ
 トップに戻る 前のページに戻る   [Japanese] / [English] 

講演抄録/キーワード
講演名 2022-10-14 10:40
[ポスター講演]A New CSI Feedback with Quantization Based on Adaptive DNN for FDD Massive MIMO Systems
Junjie GaoMondher BouaziziTomoaki OhtsukiKeio Univ.)・Guan GuiNJUPT
抄録 (和) (まだ登録されていません) 
(英) Accessing the accurate downlink channel state information (CSI) is essential to take full advantage of frequency division duplex (FDD) massive multiple-input multiple-output (MIMO) systems due to its weak channel reciprocity. Meanwhile, great computational burdens will happen, which is accompanied by continuous CSI feedback. The existing compressive sensing (CS)-based and deep learning (DL)-based methods try to solve such problems, but do not achieve desired effect to get ideal CSI feedback or decrease the overhead. An adaptive deep neural network (DNN)-based CSI feedback method is proposed in this paper to address this. A classification block of the compression ratio is adopted and modified to apply to a more complex channel model named Clustered-Delay-Line (CDL), which helps decrease the computational overhead of the network. Besides, the reconstruction accuracy of the CSI feedback is further improved by proposing a new structure of the encoder. Quantization and dequantization modules are also applied to make the whole network more robust and effectively minimize the quantization distortion in the real communication scenario, respectively. The simulation results show that the proposed method performs better than the conventional ones on the CSI reconstruction accuracy in terms of normalized mean square error (NMSE), even though the quantization module is added.
キーワード (和) / / / / / / /  
(英) CSI feedback / deep neural network / classification / quantization / massive MIMO / / /  
文献情報 信学技報
資料番号  
発行日  
ISSN  
PDFダウンロード

研究会情報
研究会 MIKA  
開催期間 2022-10-12 - 2022-10-15 
開催地(和) 新潟市民プラザ(新潟)+オンライン開催 
開催地(英) Niigata Citizens Plaza 
テーマ(和) 無線通信システム, 一般 (ポスター発表のみ受付・現地実施) 
テーマ(英)  
講演論文情報の詳細
申込み研究会 MIKA 
会議コード 2022-10-MIKA 
本文の言語 英語 
タイトル(和)  
サブタイトル(和)  
タイトル(英) A New CSI Feedback with Quantization Based on Adaptive DNN for FDD Massive MIMO Systems 
サブタイトル(英)  
キーワード(1)(和/英) / CSI feedback  
キーワード(2)(和/英) / deep neural network  
キーワード(3)(和/英) / classification  
キーワード(4)(和/英) / quantization  
キーワード(5)(和/英) / massive MIMO  
キーワード(6)(和/英) /  
キーワード(7)(和/英) /  
キーワード(8)(和/英) /  
第1著者 氏名(和/英/ヨミ) 高 俊傑 / Junjie Gao / コウ シュンケツ
第1著者 所属(和/英) 慶応義塾大学 (略称: 慶大)
Keio University (略称: Keio Univ.)
第2著者 氏名(和/英/ヨミ) Mondher Bouazizi / Mondher Bouazizi / Mondher Bouazizi
第2著者 所属(和/英) 慶応義塾大学 (略称: 慶大)
Keio University (略称: Keio Univ.)
第3著者 氏名(和/英/ヨミ) 大槻 知明 / Tomoaki Ohtsuki / トモアキ オオツキ
第3著者 所属(和/英) 慶応義塾大学 (略称: 慶大)
Keio University (略称: Keio Univ.)
第4著者 氏名(和/英/ヨミ) Guan Gui / Guan Gui / Guan Gui
第4著者 所属(和/英) 南京郵電大学 (略称: 南京郵電大)
Nanjing University of Posts and Telecommunications (略称: NJUPT)
第5著者 氏名(和/英/ヨミ) / /
第5著者 所属(和/英) (略称: )
(略称: )
第6著者 氏名(和/英/ヨミ) / /
第6著者 所属(和/英) (略称: )
(略称: )
第7著者 氏名(和/英/ヨミ) / /
第7著者 所属(和/英) (略称: )
(略称: )
第8著者 氏名(和/英/ヨミ) / /
第8著者 所属(和/英) (略称: )
(略称: )
第9著者 氏名(和/英/ヨミ) / /
第9著者 所属(和/英) (略称: )
(略称: )
第10著者 氏名(和/英/ヨミ) / /
第10著者 所属(和/英) (略称: )
(略称: )
第11著者 氏名(和/英/ヨミ) / /
第11著者 所属(和/英) (略称: )
(略称: )
第12著者 氏名(和/英/ヨミ) / /
第12著者 所属(和/英) (略称: )
(略称: )
第13著者 氏名(和/英/ヨミ) / /
第13著者 所属(和/英) (略称: )
(略称: )
第14著者 氏名(和/英/ヨミ) / /
第14著者 所属(和/英) (略称: )
(略称: )
第15著者 氏名(和/英/ヨミ) / /
第15著者 所属(和/英) (略称: )
(略称: )
第16著者 氏名(和/英/ヨミ) / /
第16著者 所属(和/英) (略称: )
(略称: )
第17著者 氏名(和/英/ヨミ) / /
第17著者 所属(和/英) (略称: )
(略称: )
第18著者 氏名(和/英/ヨミ) / /
第18著者 所属(和/英) (略称: )
(略称: )
第19著者 氏名(和/英/ヨミ) / /
第19著者 所属(和/英) (略称: )
(略称: )
第20著者 氏名(和/英/ヨミ) / /
第20著者 所属(和/英) (略称: )
(略称: )
講演者 第1著者 
発表日時 2022-10-14 10:40:00 
発表時間 50分 
申込先研究会 MIKA 
資料番号  
巻番号(vol) vol. 
号番号(no)  
ページ範囲  
ページ数  
発行日  


[研究会発表申込システムのトップページに戻る]

[電子情報通信学会ホームページ]


IEICE / 電子情報通信学会