Committee |
Date Time |
Place |
Paper Title / Authors |
Abstract |
Paper # |
MI |
2023-09-08 10:05 |
Osaka |
(Primary: On-site, Secondary: Online) |
[Short Paper]
Construction of Cell Nucleus Classifier using Complementary-Label Learning towards the Quantification of Grading for Follicular Lymphoma Ryoichi Koga, Mauricio Kugler, Tatsuya Yokota (NIT), Kouichi Ohshima, Hiroaki Miyoshi, Miharu Nagaishi (Kurume Univ.), Noriaki Hashimoto (RIKEN), Ichiro Takeuchi (Nagoya Univ.), Hidekata Hontani (NIT) MI2023-14 |
In this paper, we report the cell type classification from a pathological image toward the subtype classification of mal... [more] |
MI2023-14 pp.1-2 |
MI |
2023-03-06 10:45 |
Okinawa |
OKINAWA SEINENKAIKAN (Primary: On-site, Secondary: Online) |
Report on MICCAI 2022 Hayato Itoh, Masahiro Oda, Chen Shen, Cheng Wang (Nagoya Univ.), Kanta Miura (Tohoku Univ.), Junya Sato (Osaka Univ.), Yoshito Otake (NAIST), Ryoma Bise (Kyushu Univ.), Ryo Furukawa (Kindai Univ.), Hidekata Hontani (NITech), Yoshitaka Masutani (Tohoku Univ.), Kensaku Mori (Nagoya Univ.) MI2022-79 |
In this paper, we overview the outlines of MICCAI 2022’s main conference sessions and satellite workshops. Several inter... [more] |
MI2022-79 pp.26-37 |
MI |
2023-03-06 17:04 |
Okinawa |
OKINAWA SEINENKAIKAN (Primary: On-site, Secondary: Online) |
[Short Paper]
Rotation-Equivariant CNN for Medical Image Processing Applications Ryota Ogino, Kugler Mauricio, Tatsuya Yokota, Hidekata Hontani (NITech) MI2022-96 |
In this study, we report an attempt to use a Rotation-Equivariant CNN to organize image data whose rotation direction an... [more] |
MI2022-96 pp.113-114 |
MI |
2023-03-06 17:17 |
Okinawa |
OKINAWA SEINENKAIKAN (Primary: On-site, Secondary: Online) |
[Short Paper]
Accuracy Improvement of Annotation Label in Microscopic Pathological Images Hirotaka Yasuma, Kugler Mauricio, Tatsuya Yokota (NiTech), Kouji Arihiro (Hiroshima Univ.), Hidekata Hontani (NiTech) MI2022-97 |
[more] |
MI2022-97 pp.115-116 |
MI |
2023-03-06 17:56 |
Okinawa |
OKINAWA SEINENKAIKAN (Primary: On-site, Secondary: Online) |
[Short Paper]
Generation of Counterfactual Images towards the Construction of Quantitatively Criteria in Malignant Lymphoma Ryoichi Koga, Mauricio Kugler, Tatsuya Yokota (NIT), Kouichi Ohshima, Hiroaki Miyoshi, Miharu Nagaishi (KU), Noriaki Hashimoto, Ichiro Takeuchi (NU), Hidekata Hontani (NIT) MI2022-100 |
In pathological diagnosis of malignant lymphoma, a H&E-staind pathological image is observed to identify the subtype. Ho... [more] |
MI2022-100 pp.123-124 |
MI |
2023-03-07 17:16 |
Okinawa |
OKINAWA SEINENKAIKAN (Primary: On-site, Secondary: Online) |
[Short Paper]
Anomaly Region Detection for Chest CT Images based on Probability Density Estimation Hiroki Tobise, Mauricio Kugler, Tatsuya Yokota (NIT), Masahiro Hashimoto (Keio Univ.), Yoshito Otake (NAIST), Toshiaki Akashi (Juntendo Univ.), Akinobu Shimizu (TUAT), Hidekata Hontani (NIT) MI2022-127 |
[more] |
MI2022-127 pp.215-216 |
MI |
2022-07-08 14:00 |
Hokkaido |
(Primary: On-site, Secondary: Online) |
Cell type-specific tumor degree estimation in malignant lymphoma pathology images Hiroki Masuda (NITech), Noriaki Hashimoto (RIKEN), Yusuke Takagi (NITech), Hiroyuki Hanada (RIKEN), Hiroaki Miyoshi, Kensaku Sato, Koichi Oshima (Kurume Univ.), Hidekata Hontani (NITech), Ichiro Takeuchi (Nagoya Univ./RIKEN) MI2022-32 |
In the pathological diagnosis flow of malignant lymphoma, a type of blood cancer, it is important to identify the type o... [more] |
MI2022-32 pp.1-6 |
MI |
2022-01-26 10:13 |
Online |
Online |
[Short Paper]
Abnormality Detection for Covid-19 Chest CT Images by Dimensionality Reduction Based on Contrastive Learning Hiroki Tobise, Kugler Mauricio, Tatsuya Yokota (NITech), Masahiro Hashimoto (Keio Univ.), Yoshito Otake (NAIST), Toshiaki Akashi (Juntendo Univ.), Akinobu Shimizu (TUAT), Hidekata Hontani (NITech) MI2021-53 |
In this article, we propose a method that detects anomaly regions in chest CT images for the aid of Covid-19 diagnosis. ... [more] |
MI2021-53 pp.41-42 |
MI |
2022-01-26 16:00 |
Online |
Online |
Report on MICCAI 2021 Hayato Itoh, Masahiro Oda, Chen Shen (Nagoya Univ.), Yoshito Otake (NAIST), Shouhei Hanaoka (Tokyo Univ.), Ken'ichi Morooka (Okayama Univ.), Hidekata Hontani (NITech), Ryo Furukawa, Yoshitaka Masutani (Hiroshima City Univ.), Kensaku Mori (Nagoya Univ.) MI2021-67 |
In this paper, the outlines of MICCAI 2021 main conference sessions and workshops are introduced. A few interesting repo... [more] |
MI2021-67 pp.89-99 |
MI |
2022-01-27 13:54 |
Online |
Online |
[Short Paper]
Case-based Similar Image Retrieval for Pathological Images of Malignant Lymphoma Using Deep Metric Learning Noriaki Hashimoto (RIKEN), Yusuke Takagi, Hiroki Masuda (NITech), Hiroaki Miyoshi, Kei Kohno, Miharu Nagaishi, Kensaku Sato, Koichi Ohshima (Kurume Univ.), Hidekata Hontani (NITech), Ichiro Takeuchi (NITech/RIKEN) MI2021-78 |
We propose a novel method of case-based similar image retrieval for histopathological images of malignant lymphoma. We e... [more] |
MI2021-78 pp.144-145 |
MI, MICT [detail] |
2021-11-05 11:05 |
Online |
Online |
[Short Paper]
Description of microvessel structures in 3D reconstructed microscopic pathological images of pancreatic cancer Yuka Ishimaki, Tatsuya Yokota, Kugler Mauricio (NITech), Kenoki Ohuchida (KU), Hidekata Hontani (NITech) MICT2021-33 MI2021-31 |
In this manuscript, we propose a method that segments microvascular regions in a 3D pathological image. For this purpose... [more] |
MICT2021-33 MI2021-31 pp.26-27 |
MI |
2021-07-09 11:00 |
Online |
Online |
[Short Paper]
Construction of Subtype Classifier for Malignant Lymphoma based on H&E-stained Images using Immuno-stainning Data Yuki Hirono (NIT), Noriaki Hashimoto (RIKEN), Kugler Mauricio, Tatsuya Yokota (NIT), Miharu Nagaishi (Kurume Univ.), Hiroaki Miyoshi, Koichi Oshima (Kurume Univ./JSP), Ichiro Takeuchi (NIT/RIKEN), Hidekata Hontani (NIT) MI2021-16 |
In pathological diagnosis of malignant lymphoma, a HE image is observed at first and then a set of immunostained images ... [more] |
MI2021-16 pp.31-32 |
MI |
2021-05-17 10:00 |
Online |
Online |
[Short Paper]
Regression of Induced Electric Field for TMS by using Neural Network and Governing Equation Toyohiro Maki (NITech), Yoshikazu Ugawa, Takenobu Murakami (Fukushima Medical Univ.), Tatsuya Yokota, Akimasa Hirata, Hidekata Hontani (NITech) MI2021-1 |
TMS (Transcranial Magnetic Stimulation) is a method which stimulate the neurons in the brain by using a coil. Since stim... [more] |
MI2021-1 pp.1-2 |
PRMU |
2020-12-17 11:00 |
Online |
Online |
Fast algorithm for low-rank tensor completion in multi-way delay embedded space Ryuki Yamamoto, Tatsuya Yokota (Nagoya Institute of Tech.), Akira Imakura (Univ. of Tsukuba), Hidekata Hontani (Nagoya Institute of Tech.) PRMU2020-42 |
In recent years, low-rank tensor completion using delay embedding has been an important technique. In order to capture s... [more] |
PRMU2020-42 pp.24-29 |
MI |
2020-01-29 10:55 |
Okinawa |
OKINAWAKEN SEINENKAIKAN |
[Short Paper]
Improvement of a statistical model of human embryonic anatomical landmarks Aoi Shinjo, Atsushi Saito (TUAT), Tetsuya Takakuwa, Shigehito Yamada (KU), Hidekata Hontani, Hiroshi Matsuzoe (NIT), Shoko Miyauchi, Ken'ichi Morooka (QU), Akinobu Shimizu (TUAT) MI2019-71 |
(To be available after the conference date) [more] |
MI2019-71 pp.29-30 |
MI |
2020-01-30 10:00 |
Okinawa |
OKINAWAKEN SEINENKAIKAN |
Construction of Basis Vectors for Representation of Immunostaining Combination by Non-negative Matrix Decomposition Kaho Ko, Noriaki Hashimoto, Tatsuya Yokota (NITech), Masato Nakaguro, Kei Kohno, Shigeo Nakamura (NUH), Ichiro Takeuchi, Hidekata Hontani (NITech) MI2019-99 |
In this paper, we propose a method that constructs a set of basis vectors for representing combination of immunostaining... [more] |
MI2019-99 pp.151-154 |
MI |
2020-01-30 10:10 |
Okinawa |
OKINAWAKEN SEINENKAIKAN |
Mutual stain transfer among differently stained pathological images with Extraction of Common Image Features Hideo Adachi, Mauricio Kugler (NIT), Chika Iwamoto, Kenoki Ohuchida, Makoto Hashizume (Kyushu Univ.), Tatsuya Yokota, Hidekata Hontani (NIT) MI2019-100 |
[more] |
MI2019-100 pp.155-158 |
MI |
2020-01-30 11:00 |
Okinawa |
OKINAWAKEN SEINENKAIKAN |
High precision metal artifacts reduction in X-ray CT images by Deep Image Prior and sinogram normalization Hiroya Satake, Tatsuya Yokota (NIT), Yoshito Otake, Yoshinobu Sato (NAIST), Hidekata Hontani (NIT) MI2019-103 |
In this paper, we propose a method to improve the normalization accuracy of sinogram by using DeepImage Prior to remove ... [more] |
MI2019-103 pp.169-174 |
MI |
2020-01-30 13:25 |
Okinawa |
OKINAWAKEN SEINENKAIKAN |
Extracting and Visualization of Essential Features for Staining Translation of Pathological Images Ryoichi Koga, Noriaki Hashimoto, Tatsuya Yokota (NIT), Masato Nakaguro, Kei Kohno, Shigeo Nakamura (NUI), Ichiro Takeuchi, Hidekata Hontani (NIT) MI2019-116 |
In this manuscript, we propose a method for stain translation of pathology images. When one constructs a computer aided ... [more] |
MI2019-116 pp.215-218 |
PRMU, MI, IPSJ-CVIM [detail] |
2019-09-04 16:20 |
Okayama |
|
Domain-adversarial multiple instance learning for subtype classification of malignant lymphoma Daisuke Fukushima, Ryoichi Koga, Noriaki Hashimoto, Kaho Ko (Nagoya Inst. of Tech), Masato Nakaguro, Kei Kohno, Shigeo Nakamura (Nagoya Univ. Hospital), Hidekata Hontani (Nagoya Inst of Tech), Ichiro Takeuchi (Nagoya Inst. of Tech/RIKEN/NIMS) PRMU2019-15 MI2019-34 |
We classify subtypes of malignant lymphoma using convolutional neural network with digital pathological images as input ... [more] |
PRMU2019-15 MI2019-34 pp.19-24 |