IEICE Technical Committee Submission System
Conference Schedule
Online Proceedings
[Sign in]
Tech. Rep. Archives
    [Japanese] / [English] 
( Committee/Place/Topics  ) --Press->
 
( Paper Keywords:  /  Column:Title Auth. Affi. Abst. Keyword ) --Press->

All Technical Committee Conferences  (Searched in: All Years)

Search Results: Conference Papers
 Conference Papers (Available on Advance Programs)  (Sort by: Date Descending)
 Results 1 - 20 of 101  /  [Next]  
Committee Date Time Place Paper Title / Authors Abstract Paper #
IBISML 2024-12-20
10:50
Hokkaido Lecture room 1, Graduate School of Environmental Science
(Primary: On-site, Secondary: Online)
Active learning considering test distribution with Gaussian process regression model
Yoshito Okura (Nagoya Univ.), Shion Takeno (Nagoya Univ./RIKEN), Yu Inatsu (NITech), Tatsuya Aoyama, Tomonari Tanaka, Satoshi Akahane (Nagoya Univ.), Hiroyuki Hanada, Noriaki Hashimoto (RIKEN), Taro Murayama, Lee Hanju, Shinya Kojima (DENSO), Ichiro Takeuchi (Nagoya Univ./RIKEN)
(To be available after the conference date) [more]
IBISML 2024-12-20
17:00
Hokkaido Lecture room 1, Graduate School of Environmental Science
(Primary: On-site, Secondary: Online)
Bayesian Optimization for Simultaneous Selection of Machine Learning Algorithms and Hyperparameters on Shared Latent Space
Kazuki Ishikawa, Ryota Ozaki, Yohei Kanzaki (NITech), Ichiro Takeuchi (Nagoya Univ/RIKEN), Masayuki Karasuyama (NITech)
(To be available after the conference date) [more]
IBISML 2024-12-21
11:10
Hokkaido Lecture room 1, Graduate School of Environmental Science
(Primary: On-site, Secondary: Online)
Selective Inference for Auto Feature Engineering
Tatsuya Matsukawa, Tomohiro Shiraishi (Nagoya Univ.), Shuichi Nishino (Nagoya Univ./RIKEN), Teruyuki Katsuoka (Nagoya Univ.), Ichiro Takeuchi (Nagoya Univ./RIKEN)
(To be available after the conference date) [more]
IBISML 2024-12-21
15:30
Hokkaido Lecture room 1, Graduate School of Environmental Science
(Primary: On-site, Secondary: Online)
Distributionally Robust Training Instances Selection with Guaranteed Model Performance
Tomonari Tanaka (Nagoya Univ.), Hiroyuki Hanada (RIKEN), Hanting Yang (Nagoya University), Tatsuya Aoyama (Nagoya Univ.), Yu Inatsu (NITech), Satoshi Akahane, Yoshito Okura (Nagoya Univ.), Noriaki Hashimoto (RIKEN), Taro Murayama, Lee Hanju, Shinya Kojima (DENSO), Ichiro Takeuchi (Nagoya Univ./RIKEN)
(To be available after the conference date) [more]
IBISML, NC, IPSJ-BIO, IPSJ-MPS [detail] 2024-06-20
14:20
Okinawa OIST Anomaly Detection in the Frequency Domain with Statistical Reliability
Akifumi Yamada, Kouichi Taji (Nagoya Univ.), Ichiro Takeuchi (Nagoya Univ./RIKEN) NC2024-7 IBISML2024-7
There are many applications of artificial intelligence (AI) in the field of anomaly detection in the frequency domain fo... [more] NC2024-7 IBISML2024-7
pp.43-50
IBISML, NC, IPSJ-BIO, IPSJ-MPS [detail] 2024-06-20
15:00
Okinawa OIST Selective Inference for Reliability Quantification of k-Nearest Neighbor Anomoaly Detection
Mizuki Niihori (Nagoya Univ.), Masaya Ikuta (NITech), Akihumi Yamada, Kouichi Taji, Ichiro Takeuchi (Nagoya Univ.) NC2024-8 IBISML2024-8
Currently, the $k$-nearest neighbor method is widely used in the field of machine learning anomaly detection.
This met... [more]
NC2024-8 IBISML2024-8
pp.51-59
IBISML, NC, IPSJ-BIO, IPSJ-MPS [detail] 2024-06-20
15:25
Okinawa OIST Selective Inference for Anomaly Detection using Diffusion Models
Teruyuki Katsuoka, Tomohiro Shiraishi (Nagoya Univ.), Daiki Miwa (NITech), Vo Nguyen Le Duy (RIKEN), Ichiro Takeuchi (Nagoya Univ./RIKEN) NC2024-9 IBISML2024-9
In recent years, there has been active research on anomaly detection using diffusion models, which are generative models... [more] NC2024-9 IBISML2024-9
pp.60-66
IBISML, NC, IPSJ-BIO, IPSJ-MPS [detail] 2024-06-20
15:50
Okinawa OIST Distributionally Robust Safe Sample Screening and Its Application to Infinite-width Deep Neural Networks
Tatsuya Aoyama (Nagoya Univ.), Hiroyuki Hanada (RIKEN), Satoshi Akahane, Yoshito Okura, Tomonari Tanaka (Nagoya Univ.), Yu Inatsu (NITech), Noriaki Hashimoto (RIKEN), Taro Murayama, Lee Hanju, Shinya Kojima (DENSO), Ichiro Takeuchi (Nagoya Univ.) NC2024-10 IBISML2024-10
In machine learning, handling large datasets has been problematic in computational resources. For this issue, safe sampl... [more] NC2024-10 IBISML2024-10
pp.67-72
MI 2024-03-03
09:05
Okinawa OKINAWAKEN SEINENKAIKAN
(Primary: On-site, Secondary: Online)
[Short Paper] Generation of Counterfactual Pathology Images of Malignant Lymphoma using Diffusion Models
Ryoichi Koga, Tatsuya Yokota (NIT), Kouichi Ohshima, Hiroaki Miyoshi, Miharu Nagaishi (Kurume Univ.), Noriaki Hashimoto (RIKEN), Ichiro Takeuchi (Nagoya Univ.), Hidekata Hontani (NIT) MI2023-30
Malignant lymphoma has more than 70 subtypes. In the pathological diagnosis, a pathological image is observed to identif... [more] MI2023-30
pp.1-2
MI 2024-03-03
09:17
Okinawa OKINAWAKEN SEINENKAIKAN
(Primary: On-site, Secondary: Online)
[Short Paper] Valid p-value for critical instances in multiple instance learning
Noriaki Hashimoto (RIKEN), Daiki Miwa (Nitech), Kosei Sumida (Nagoya Univ.), Hiroyuki Hanada (RIKEN), Hiroaki Miyoshi (Kurume Univ.), Jun Sakuma (Tokyo Tech/RIKEN), Hidekata Hontani (Nitech), Koichi Ohshima (Kurume Univ.), Ichiro Takeuchi (Nagoya Univ./RIKEN) MI2023-31
(To be available after the conference date) [more] MI2023-31
pp.3-6
MI 2024-03-03
16:42
Okinawa OKINAWAKEN SEINENKAIKAN
(Primary: On-site, Secondary: Online)
[Short Paper] Using Label Uncertainty for Learning Cell Nuclei Type Classifier with Strongly Noisy Supervised Signals
Shingo Koide, Mauricio Kugler, Tatsuya Yokota (NIT), Koichi Ohshima, Hiroaki Miyoshi, Miharu Nagaishi (Kurume Univ.), Noriaki Hashimoto (RIKEN), Ichiro Takeuchi (Nagoya Univ.), Hidekata Hontani (NIT) MI2023-57
In this study, we construct a type classifier for cell nuclei of malignant lymphomas. Labelling by type is not easy, eve... [more] MI2023-57
pp.79-80
MI 2024-03-04
11:10
Okinawa OKINAWAKEN SEINENKAIKAN
(Primary: On-site, Secondary: Online)
[Short Paper] Identification of follicle segmentation and subtype in a lymph node HE-stained image based on the set of cell nuclei
Mizuki Moribe, Tatsuya Yokota (NIT), Koichi Oshima, Hiroaki Miyoshi, Miharu Nagaishi (Kurume Univ.), Noriaki Hashimoto (RIKEN), Ichiro Takeuchi (NU), Hidekata Hontani (NIT) MI2023-72
In this paper, we report on a method for follicle segmentation and the identification of malignant lymphoma subtypes usi... [more] MI2023-72
pp.131-132
MI 2023-09-08
10:05
Osaka
(Primary: On-site, Secondary: Online)
[Short Paper] Construction of Cell Nucleus Classifier using Complementary-Label Learning towards the Quantification of Grading for Follicular Lymphoma
Ryoichi Koga, Mauricio Kugler, Tatsuya Yokota (NIT), Kouichi Ohshima, Hiroaki Miyoshi, Miharu Nagaishi (Kurume Univ.), Noriaki Hashimoto (RIKEN), Ichiro Takeuchi (Nagoya Univ.), Hidekata Hontani (NIT) MI2023-14
In this paper, we report the cell type classification from a pathological image toward the subtype classification of mal... [more] MI2023-14
pp.1-2
NC, IBISML, IPSJ-BIO, IPSJ-MPS [detail] 2023-06-29
13:30
Okinawa OIST Conference Center
(Primary: On-site, Secondary: Online)
Selective Inference for a Combination of Feature Selection Algorithms
Tatsuya Matsukawa (Nagoya Univ.), Daiki Miwa (NITech), Vo Nguyen Le Duy (RIKEN), Koichi Taji (Nagoya Univ.), Ichiro Takeuchi (Nagoya Univ./RIKEN) NC2023-1 IBISML2023-1
In data-driven science, classical statistical hypothesis testing does not provide an adequate reliability assessment bec... [more] NC2023-1 IBISML2023-1
pp.1-8
NC, IBISML, IPSJ-BIO, IPSJ-MPS [detail] 2023-06-29
15:10
Okinawa OIST Conference Center
(Primary: On-site, Secondary: Online)
Selective Inference for DNN-driven Saliency Map
Daiki Miwa (NITech), Vo Nguyen Le Duy (RIKEN), Tomohiro Shiraishi (Nagoya Univ.), Ichiro Takeuchi (Nagoya Univ./RIKEN) NC2023-5 IBISML2023-5
The usefulness of image classification using DNN models has been confirmed in various fields, but the prediction mechani... [more] NC2023-5 IBISML2023-5
pp.30-34
MI 2023-03-06
17:56
Okinawa OKINAWA SEINENKAIKAN
(Primary: On-site, Secondary: Online)
[Short Paper] Generation of Counterfactual Images towards the Construction of Quantitatively Criteria in Malignant Lymphoma
Ryoichi Koga, Mauricio Kugler, Tatsuya Yokota (NIT), Kouichi Ohshima, Hiroaki Miyoshi, Miharu Nagaishi (KU), Noriaki Hashimoto, Ichiro Takeuchi (NU), Hidekata Hontani (NIT) MI2022-100
In pathological diagnosis of malignant lymphoma, a H&E-staind pathological image is observed to identify the subtype. Ho... [more] MI2022-100
pp.123-124
PRMU, IBISML, IPSJ-CVIM [detail] 2023-03-03
16:25
Hokkaido Future University Hakodate
(Primary: On-site, Secondary: Online)
Fast Identification of Possible Model Parameter Update for Low-Rank Update of Training Data
Hiroyuki Hanada, Noriaki Hashimoto (RIKEN), Kouichi Taji, Ichiro Takeuchi (Nagoya Univ.) PRMU2022-123 IBISML2022-130
Machine learning methods often require re-training the training dataset with low-rank modifications (small number of ins... [more] PRMU2022-123 IBISML2022-130
pp.347-354
IBISML 2022-12-23
13:40
Kyoto Kyoto University
(Primary: On-site, Secondary: Online)
Multi-objective Bayesian Optimization for Identifying Distributionally-robust Pareto-frontier
Yu Inatsu (Nitech), Ichiro Takeuchi (Nagoya Univ./RIKEN) IBISML2022-59
Pareto optimization is one of the multi-objective optimization problems for multiple black-box functions. Recently, an o... [more] IBISML2022-59
pp.112-119
IBISML 2022-12-23
14:30
Kyoto Kyoto University
(Primary: On-site, Secondary: Online)
Selective Inference for Cluster Level Inference in Brain Image Analysis
Masaya Ikuta, Mizuki Sato (NITech), Akifumi Yamada (Nagoya Univ.), Vo Nguyen Le Duy (NITech/RIKEN), Ryo Emoto (Nagoya Univ.), Yuko Ishimaru, Yuka Takao, Atsushi Kawaguchi (Saga Univ.), Shigeyuki Matsui (Nagoya Univ.), Ichiro Takeuchi (Nagoya Univ./RIKEN) IBISML2022-61
Cluster-level inference in brain image analysis is often employed to identify disease-related regions in brain disorders... [more] IBISML2022-61
pp.128-133
IBISML 2022-09-15
15:05
Kanagawa Keio Univ. (Yagami Campus)
(Primary: On-site, Secondary: Online)
Improving Efficiency of Regularization Path Computation in Safe Pattern Pruning via Multiple Referential Solutions
Takumi Yoshida (Nitech), Hiroyuki Hanada (RIKEN), Kazuya Nakagawa, Shinya Suzumura, Onur Boyar, Kazuki Iwata (Nitech), Shun Shimura, Yuji Tanaka (NaogyaU), Masayuki Karasuyama (Nitech), Kouichi Taji (NaogyaU), Koji Tsuda (UTokyo/RIKEN), Ichiro Takeuchi (NaogyaU/RIKEN) IBISML2022-38
Safe Screening and Safe Pattern Pruning are methods for efficiently modeling high-dimensional features by $L_1$-regulari... [more] IBISML2022-38
pp.39-46
 Results 1 - 20 of 101  /  [Next]  
Choose a download format for default settings. [NEW !!]
Text format pLaTeX format CSV format BibTeX format
Copyright and reproduction : All rights are reserved and no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Notwithstanding, instructors are permitted to photocopy isolated articles for noncommercial classroom use without fee. (License No.: 10GA0019/12GB0052/13GB0056/17GB0034/18GB0034)


[Return to Top Page]

[Return to IEICE Web Page]


The Institute of Electronics, Information and Communication Engineers (IEICE), Japan