Committee |
Date Time |
Place |
Paper Title / Authors |
Abstract |
Paper # |
SP, IPSJ-SLP, EA, SIP [detail] |
2023-02-28 11:20 |
Okinawa |
(Okinawa, Online) (Primary: On-site, Secondary: Online) |
Hadamard-coded Supervised Discrete Hashing on Quaternion Domain Akari Katsuma, Seisuke Kyochi (Kogakuin Univ.), Shunsuke Ono (Tokyo Tech.), Ivan Selesnick (New York Univ.) EA2022-85 SIP2022-129 SP2022-49 |
[more] |
EA2022-85 SIP2022-129 SP2022-49 pp.61-66 |
EA, SIP, SP, IPSJ-SLP [detail] |
2022-03-01 09:20 |
Okinawa |
(Okinawa, Online) (Primary: On-site, Secondary: Online) |
[Poster Presentation]
A Locally Constrained Sampling Strategy for Generalized Graph Signal Sampling Kazuki Asakura, Shunsuke Ono (Tokyo Tech) EA2021-69 SIP2021-96 SP2021-54 |
We propose a design method of vertex domain sampling for graph signals that guarantees perfect reconstruction. The exist... [more] |
EA2021-69 SIP2021-96 SP2021-54 pp.32-37 |
EA, SIP, SP, IPSJ-SLP [detail] |
2022-03-01 09:20 |
Okinawa |
(Okinawa, Online) (Primary: On-site, Secondary: Online) |
[Poster Presentation]
Hyperspectral Image Denoising by Graph Spatio-Spectral Total Variation Minimization Shingo Takemoto, Kazuki Naganuma, Shunsuke Ono (Tokyo Tech) EA2021-70 SIP2021-97 SP2021-55 |
We propose a novel denoising method for hyperspectral images (HSI) based on the Graph Spatio-Spectral Total Variation (G... [more] |
EA2021-70 SIP2021-97 SP2021-55 pp.38-43 |
EA, SIP, SP, IPSJ-SLP [detail] |
2022-03-01 09:20 |
Okinawa |
(Okinawa, Online) (Primary: On-site, Secondary: Online) |
[Poster Presentation]
Robust Hyperspectral Anomaly Detection via Component Decomposition Based on Convex Optimization Koyo Sato, Shunsuke Ono (Tokyo Tech) EA2021-71 SIP2021-98 SP2021-56 |
Anomaly detection in hyperspectral (HS) images is a technique to identify pixels whose spectral wavelengths differ from ... [more] |
EA2021-71 SIP2021-98 SP2021-56 pp.44-49 |
IE, SIP, BioX, ITE-IST, ITE-ME [detail] |
2021-06-04 11:15 |
Online |
Online (Online) |
Robust Constrained Hyperspectral Unmixing Using Multiple Regularizations Yuki Nagamatsu, Shunsuke Ono (Tokyo Tech) SIP2021-9 BioX2021-9 IE2021-9 |
(To be available after the conference date) [more] |
SIP2021-9 BioX2021-9 IE2021-9 pp.41-45 |
IE, SIP, BioX, ITE-IST, ITE-ME [detail] |
2021-06-04 11:45 |
Online |
Online (Online) |
Frequency-domain Robust Principal Component Analysis Manabu Sueyasu, Seisuke Kyochi (The Univ. of Kitakyushu), Shunsuke Ono (Tokyo Tech) SIP2021-10 BioX2021-10 IE2021-10 |
Low-rank modeling is one of the most effective approaches that can analyze and extract isomorphic components from an obs... [more] |
SIP2021-10 BioX2021-10 IE2021-10 pp.46-50 |
EA, US, SP, SIP, IPSJ-SLP [detail] |
2021-03-03 10:00 |
Online |
Online (Online) |
A Constrained Alternating Minimization Approach to End-to-End Graph Signal Denoising Eisuke Yamagata, Shunsuke Ono (Titech) EA2020-59 SIP2020-90 SP2020-24 |
This paper proposes a denoising method for smooth graph signals observed on a graph of unknown topology. The proposed me... [more] |
EA2020-59 SIP2020-90 SP2020-24 pp.1-4 |
EA, US, SP, SIP, IPSJ-SLP [detail] |
2021-03-03 10:25 |
Online |
Online (Online) |
Remote Sensing Data Restoration by Constraining the Gradients of Stripe Noise Kazuki Naganuma, Saori Takeyama, Shunsuke Ono (Titech) EA2020-60 SIP2020-91 SP2020-25 |
This paper proposes an effective and efficient restoration methods for remote-sensing data by constraining the gradient ... [more] |
EA2020-60 SIP2020-91 SP2020-25 pp.5-8 |
EA, US, SP, SIP, IPSJ-SLP [detail] |
2021-03-03 10:50 |
Online |
Online (Online) |
Design of Graph Signal Sampling Matrices for Arbitrary Signal Subspaces Junya Hara, Koki Yamada (TUAT), Shunsuke Ono (TIT), Yuichi Tanaka (TUAT) EA2020-61 SIP2020-92 SP2020-26 |
We propose a design method of sampling matrices for graph signals that guarantees perfect recovery for arbitrary graph s... [more] |
EA2020-61 SIP2020-92 SP2020-26 pp.9-14 |
SP, EA, SIP |
2020-03-03 15:25 |
Okinawa |
Okinawa Industry Support Center (Okinawa) (Cancelled but technical report was issued) |
Mixed norm minimization based on epigraphical projection Seisuke Kyochi (The Univ. of Kitakyushu), Shunsuke Ono (Tokyo Tech) EA2019-165 SIP2019-167 SP2019-114 |
[more] |
EA2019-165 SIP2019-167 SP2019-114 pp.373-378 |
SIP |
2019-08-29 15:35 |
Tokyo |
(Tokyo) |
Using word co-occurrences for visualizing research trends Marie Katsurai (Doshisha Univ.), Shunsuke Ono (Tokyo Institute of Tech.) SIP2019-43 |
Word co-occurrence statistics have been widely used to provide insight into the topic evolution in an arbitrary research... [more] |
SIP2019-43 pp.23-27 |
SIP, MI, IE |
2019-05-23 13:25 |
Aichi |
(Aichi) |
OCT Volumetric Data Restoration with 3-D Non-separable Oversampled Lapped Transforms Yuta Yoshida, Genki fujii (Graduate School of Science and Tech., Niigata Univ.), Shogo Muramatsu, Samuel Choi (Niigata Univ.), Shunsuke Ono (Tokyo Institute of Tech.), Takeru Ota, Fumiaki Nin, Hiroshi Hibino (Niigata Univ.) SIP2019-2 IE2019-2 MI2019-2 |
[more] |
SIP2019-2 IE2019-2 MI2019-2 pp.7-12 |
EA, SIP, SP |
2019-03-15 13:30 |
Nagasaki |
i+Land nagasaki (Nagasaki-shi) (Nagasaki) |
[Poster Presentation]
A compressed sensing approach to hyperspectral pansharpening Saori Takeyama, Shunsuke Ono, Itsuo Kumazawa (Tokyo Tech) EA2018-137 SIP2018-143 SP2018-99 |
(To be available after the conference date) [more] |
EA2018-137 SIP2018-143 SP2018-99 pp.223-227 |
SIP |
2018-08-20 14:25 |
Tokyo |
Takushoku Univ. Bunkyo Campus. (Tokyo) |
Experiment on OCT Volumetric Data Restoration via Hierarchical Sparsity and Hard Constraint Genki Fujii, Shogo Muramatsu, Samuel Choi (Niigata Univ.), Shunsuke Ono (Tokyo Tech.), Takeru Ota, Fumiaki Nin, Hiroshi Hibino (Niigata Univ.) SIP2018-58 |
In this report, we try to apply the restoration algorithm proposed in [1] to real observation data acquired byoptical co... [more] |
SIP2018-58 pp.7-12 |
PRMU, MI, IE, SIP |
2018-05-17 15:15 |
Gifu |
(Gifu) |
On OCT Volumetric Data Restoration via Hierarchical Sparsity and Hard Constraint Shogo Muramatsu, Satoshi Nagayama, Samuel Choi (Niigata Univ.), Shunsuke Ono (Tokyo Institute of Tech.), Takeru Ota, Fumiaki Nin, Hiroshi Hibino (Niigata Univ.) SIP2018-3 IE2018-3 PRMU2018-3 MI2018-3 |
This work proposes a novel restoration method for optical coherence tomography (OCT) data. OCT is a measurement techniqu... [more] |
SIP2018-3 IE2018-3 PRMU2018-3 MI2018-3 pp.7-12 |
SIP, EA, SP, MI (Joint) [detail] |
2018-03-19 13:00 |
Okinawa |
(Okinawa) |
[Poster Presentation]
A new hyperspectral pansharpening method using noisy panchromatic image Saori Takeyama, Shunsuke Ono, Itsuo Kumazawa (Tokyo Inst. of Tech.) EA2017-127 SIP2017-136 SP2017-110 |
(To be available after the conference date) [more] |
EA2017-127 SIP2017-136 SP2017-110 pp.143-148 |
IE |
2017-06-29 14:15 |
Okinawa |
(Okinawa) |
IE2017-27 |
(To be available after the conference date) [more] |
IE2017-27 pp.13-18 |
IE, ITS, ITE-AIT, ITE-HI, ITE-ME, ITE-MMS, ITE-CE [detail] |
2017-02-21 14:30 |
Hokkaido |
Hokkaido Univ. (Hokkaido) |
Minimization of mixed norm for frequency spectrum of images and its application of pattern noise decomposition Keiichiro Shirai (Shinshu Univ.), Shunsuke Ono (Tokyo Institute Tech.), Masahiro Okuda (Univ. Kitakyushu) ITS2016-57 IE2016-115 |
This paper deals with a mixed norm for complex vectors, i.e., the summation of amplitude spectrum, and its minimization ... [more] |
ITS2016-57 IE2016-115 pp.275-280 |
IE, ITS, ITE-AIT, ITE-HI, ITE-ME, ITE-MMS, ITE-CE [detail] |
2017-02-21 14:45 |
Hokkaido |
Hokkaido Univ. (Hokkaido) |
Mixed noise removal of hyperspectral images by hybrid spatio-spectral total variation reguralization Saori Takeyama, Shunsuke Ono, Itsuo Kumazawa (Tokyo Tech.) ITS2016-58 IE2016-116 |
Since hyperspectral image (HSI) contains rich spectral information, it has been recognized as a key technology in many f... [more] |
ITS2016-58 IE2016-116 pp.281-285 |
IE |
2016-07-01 13:10 |
Okinawa |
(Okinawa) |
A constrained optimization approach to image restoration using blurred/noisy image pair Saori Takeyama, Shunsuke Ono, Itsuo Kumazawa (Tokyo Tech.) IE2016-40 |
Existing image restoration methods with a blurred/noisy image pair do not fully exploit the information on both images i... [more] |
IE2016-40 pp.25-29 |