|
|
All Technical Committee Conferences (Searched in: All Years)
|
|
Search Results: Conference Papers |
Conference Papers (Available on Advance Programs) (Sort by: Date Descending) |
|
Committee |
Date Time |
Place |
Paper Title / Authors |
Abstract |
Paper # |
COMP |
2023-12-22 10:25 |
Miyazaki |
Miyazaki Univ. Machinaka Campus (Miyazaki) |
Algorithms for Optimally Shifting Intervals under Intersection Graph Models Honorato Droguett Nicolas, Kazuhiro Kurita (Nagoya Univ.), Tesshu Hanaka (Kyushu Univ.), Hirotaka Ono (Nagoya Univ.) COMP2023-17 |
We address a general optimisation problem of minimising the moving distance applied to the objects of an intersection gr... [more] |
COMP2023-17 pp.6-11 |
COMP |
2023-10-24 14:05 |
Aichi |
Nagoya Univ. Venture Business Lab. (Aichi) |
Solving Distance-constrained Labeling Problems for Small Diameter Graphs via TSP Tesshu Hanaka (Kyushu Univ.), Hirotaka Ono, Kosuke Sugiyama (Nagoya Univ.) COMP2023-12 |
For an undirected graph $G=(V,E)$ and a $k$-nonnegative integer vector $bp=(p_1,ldots,p_k)$, a mapping $lcolon Vto mathb... [more] |
COMP2023-12 pp.9-11 |
COMP |
2022-10-26 15:15 |
Fukuoka |
Kyusyu Univ. Nishijin Plaza (Fukuoka) |
[Invited Talk]
Hedonic Games and Treewidth Revisited Tesshu Hanaka (Kyushu Univ.), Michael Lampis (LAMSADE) COMP2022-18 |
[more] |
COMP2022-18 p.29 |
COMP |
2022-03-06 16:30 |
Online |
Online (Online) |
Fixed-parameter tractability of linear extension diameter Tesshu Hanaka (Nagoya Univ), Yasuaki Kobayashi (Kyoto Univ) COMP2021-37 |
[more] |
COMP2021-37 pp.31-35 |
COMP |
2020-12-04 11:10 |
Online |
Online (Online) |
Capacitated Network Design Games on a Generalized Fair Allocation Model Toshiyuki Hirose (Nagoya Univ.), Tesshu Hanaka (Chuo Univ.), Hirotaka Ono (Nagoya Univ.) COMP2020-21 |
The cost-sharing connection game is a variant of routing games on a network. In this model, given a directed graph with ... [more] |
COMP2020-21 pp.24-27 |
COMP |
2020-12-04 15:20 |
Online |
Online (Online) |
Fixed Parameter Algorithms for L(p,1)-labeling Kazuma Kawai (Nagoya Univ), Tesshu Hanaka (Chuo Univ), Hirotaka Ono (Nagoya Univ) COMP2020-24 |
Given a graph, an $L(p,1)$-labeling of the graph is an assignment $f$ from the vertex set to the set of nonnegative inte... [more] |
COMP2020-24 pp.30-32 |
COMP |
2020-12-04 15:50 |
Online |
Online (Online) |
An Improved Deterministic Parameterized Algorithm for Cactus Vertex Deletion Yuuki Aoike (Yokohama City Univ.), Tatsuya Gima (Nagoya Univ.), Tesshu Hanaka (Chuo Univ.), Masashi Kiyomi (Yokohama City Univ.), Yasuaki Kobayashi, Yusuke Kobayashi (Kyoto Univ.), Kazuhiro Kurita (NII), Yota Otachi (Nagoya Univ.) COMP2020-25 |
[more] |
COMP2020-25 pp.33-38 |
COMP |
2020-12-04 16:30 |
Online |
Online (Online) |
Approximation algorithms for the maximum happy set problem Yuichi Asahiro (Kyushu Sangyo Univ), Hiroshi Eto (Kyushu Univ), Tesshu Hanaka (Chuo Univ), Guohui Lin (U. Alberta), Eiji Miyano, Ippei Terabaru (Kyutech) COMP2020-26 |
[more] |
COMP2020-26 pp.39-43 |
COMP, IPSJ-AL |
2019-05-11 16:40 |
Kumamoto |
Kumamoto University (Kumamoto) |
Subgraph Isomorphism on Graph Classes that Exclude a Substructure Hans L. Bodlaender (Utrecht Univ.), Tesshu Hanaka (Chuo Univ.), Yasuaki Kobayashi, Yusuke Kobayashi (Kyoto Univ.), Yoshio Okamoto (UEC), Yota Otachi (Kumamoto Univ.), Tom C. van der Zanden (Utrecht Univ.) COMP2019-9 |
[more] |
COMP2019-9 pp.103-104 |
COMP |
2018-09-18 16:25 |
Fukuoka |
Kyusyu Institute of Technology (Fukuoka) |
Triangulation with Many/Few Triangles Hiroshi Eto (Kyushu Univ), Tesshu Hanaka (Chuo Univ), Eiji Miyano, Ayumi Nishijima (Kyutech), Hirotaka Ono (Nagoya Univ), Yota Otachi (Kumamoto Univ), Toshiki Saitoh (Kyutech), Ryuhei Uehara (JAIST), Tom C. van der Zanden (Utrecht Univ) COMP2018-19 |
[more] |
COMP2018-19 pp.69-76 |
COMP, IPSJ-AL |
2018-05-25 16:20 |
Aichi |
Nagoya Institute of Technology (Aichi) |
Optimal partition of a tree with social distance Masahiro Okubo (Nagoya Univ.), Tesshu Hanaka (Chuo Univ.), Hirotaka Ono (Nagoya Univ.) COMP2018-3 |
Given a graph $G=(V,E)$, a partition ${C_1,C_2, ldots, C_k}$ of $V$ is called a graph partition. We consider a social we... [more] |
COMP2018-3 pp.37-44 |
|
|
|
Copyright and reproduction :
All rights are reserved and no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Notwithstanding, instructors are permitted to photocopy isolated articles for noncommercial classroom use without fee. (License No.: 10GA0019/12GB0052/13GB0056/17GB0034/18GB0034)
|
[Return to Top Page]
[Return to IEICE Web Page]
|