IEICE Technical Committee Submission System
Conference Schedule
Online Proceedings
[Sign in]
Tech. Rep. Archives
    [Japanese] / [English] 
( Committee/Place/Topics  ) --Press->
 
( Paper Keywords:  /  Column:Title Auth. Affi. Abst. Keyword ) --Press->

All Technical Committee Conferences  (Searched in: All Years)

Search Results: Conference Papers
 Conference Papers (Available on Advance Programs)  (Sort by: Date Descending)
 Results 1 - 11 of 11  /   
Committee Date Time Place Paper Title / Authors Abstract Paper #
RECONF 2022-09-08
09:45
Aichi emCAMPUS STUDIO
(Primary: On-site, Secondary: Online)
FPGA implementation of small area sum-of-products arithmetic unit for Posit and consideration of its introduction into AI chip ReNA
Yasuhiro Nakahara, Yuta Masuda, Masato Kiyama, Masahiro Iida (Kumamoto Univ.) RECONF2022-33
 [more] RECONF2022-33
pp.23-28
RECONF 2022-09-08
10:10
Aichi emCAMPUS STUDIO
(Primary: On-site, Secondary: Online)
Proposal and evaluation of Combined Posit MAC unit (CPMAC) for both DNN inference and training
Yuta Masuda, Yasuhiro Nakahara, Masato Kiyama, Masahiro Iida (Kumamoto Univ.) RECONF2022-34
Recently, there has been a lot of research on DNN hardware accelerators for the edge that use Posit as a number represen... [more] RECONF2022-34
pp.29-34
RECONF 2022-06-07
16:45
Ibaraki CCS, Univ. of Tsukuba
(Primary: On-site, Secondary: Online)
Preliminary Evaluation of FPGA-to-FPGA Communication Speed in FPGA Cluster ESSPER
Rintaro Sakai, Yasuhiro Nakahara (Kumamoto Univ. /R-CSS), Kentaro Sano (R-CCS), Masahiro Iida (Kumamoto Univ. /R-CSS) RECONF2022-11
This study evaluates the communication speed between FPGAs assuming the FPGA cluster ESSPER is a scalable and
flexible ... [more]
RECONF2022-11
pp.48-49
RECONF, VLD, CPSY, IPSJ-ARC, IPSJ-SLDM [detail] 2022-01-24
16:45
Online Online A study of an accelerator for CNN inference on FPGA clusters
Rintaro Sakai (Kumamoto Univ. /R-CSS), Yasuhiro Nakahara (Kumamoto Univ. /R-CCS), Kentaro Sano (R-CCS), Masahiro Iida (Kumamoto Univ. /R-CCS) VLD2021-60 CPSY2021-29 RECONF2021-68
In this study, we propose a CNN accelerator for FPGA clusters, which accelerates the CNN inference process by distributi... [more] VLD2021-60 CPSY2021-29 RECONF2021-68
pp.61-66
VLD, DC, RECONF, ICD, IPSJ-SLDM
(Joint) [detail]
2021-12-01
10:35
Online Online Basic evaluation of ReNA, a DNN accelerator using numerical representation posit
Yasuhiro Nakahara, Yuta Masuda, Masato Kiyama, Motoki Amagasaki, Masahiro Iida (Kumamoto Univ.) VLD2021-24 ICD2021-34 DC2021-30 RECONF2021-32
In Convolutional Neural Network (CNN) accelerators for edge, numerical precision of data should be reduced as much as po... [more] VLD2021-24 ICD2021-34 DC2021-30 RECONF2021-32
pp.43-48
RECONF 2021-06-08
16:10
Online Online Automatic generation of executable code for ReNA
Yuta Masuda, Yasuhiro Nakahara, Motoki Amagasaki, Masahiro Iida (Kumamoto Univ.) RECONF2021-6
We have been developing ReNA as a CNN accelerator for the edge, which is controlled by directly specifying control signa... [more] RECONF2021-6
pp.26-31
HWS, VLD [detail] 2021-03-03
11:15
Online Online The Design and Development of of Quantized Neural Networks Library for Exact Hardware Emulation
Masato Kiyama, Yasuhiro Nakahara, Motoki Amagasaki, Masahiro Iida (Kumamoto Univ.) VLD2020-70 HWS2020-45
Quantization is used to speed up execution time and save power when runnning Deep neural networks (DNNs) on edge devices... [more] VLD2020-70 HWS2020-45
pp.18-23
VLD, DC, RECONF, ICD, IPSJ-SLDM
(Joint) [detail]
2020-11-17
10:45
Online Online Implementation of YOLO in the AI accelerator ReNA
Toma Uemura, Yasuhiro Nakahara, Motoki Amagasaki, Masato Kiyama, Masahiro Iida (Kumamoto Univ.) VLD2020-22 ICD2020-42 DC2020-42 RECONF2020-41
The object detection,which is a typical AI process,has been attracting attention in various fields because it can identi... [more] VLD2020-22 ICD2020-42 DC2020-42 RECONF2020-41
pp.66-71
VLD, DC, CPSY, RECONF, ICD, IE, IPSJ-SLDM, IPSJ-EMB, IPSJ-ARC
(Joint) [detail]
2019-11-14
10:05
Ehime Ehime Prefecture Gender Equality Center DNN accelerator for AI edge computing
Yasuhiro Nakahara, Juntaro Chikama, Motoki Amagasaki (Kumamoto Univ.), Zhao Qian (Kyutech), Masahiro Iida (Kumamoto Univ.) RECONF2019-38
Convolutional Neural Network (CNN), a kind of artificial intelligence for image recognition, is used in
various fields ... [more]
RECONF2019-38
pp.15-20
RECONF 2019-09-20
14:00
Fukuoka KITAKYUSHU Convention Center Quantized Neural Networks Library for Exact Hardware Emulation
Masato Kiyama, Yasuhiro Nakahara, Motoki Amagasaki, Masahiro Iida (Kumamoto Univ.) RECONF2019-33
Deep neural networks (DNNs) have recently shown outstanding performance in many application domains.
However, it is dif... [more]
RECONF2019-33
pp.69-74
RECONF 2018-05-24
14:30
Tokyo GATE CITY OHSAKI Visibility study of CNN implementation using High Speed Serial Optical Interconnection
Juntaro Chikama, Yasuhiro Nakahara, Motoki Amagasaki, Morihiro Kuga, Msahiro Iida, Toshinori Sueyoshi (Kumamoto Univ.) RECONF2018-7
In this research, we realize a low power consumption and scalable system by implementing CNN on multi FPGA system.To sol... [more] RECONF2018-7
pp.33-38
 Results 1 - 11 of 11  /   
Choose a download format for default settings. [NEW !!]
Text format pLaTeX format CSV format BibTeX format
Copyright and reproduction : All rights are reserved and no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Notwithstanding, instructors are permitted to photocopy isolated articles for noncommercial classroom use without fee. (License No.: 10GA0019/12GB0052/13GB0056/17GB0034/18GB0034)


[Return to Top Page]

[Return to IEICE Web Page]


The Institute of Electronics, Information and Communication Engineers (IEICE), Japan