IEICE Technical Committee Submission System
Conference Schedule
Online Proceedings
[Sign in]
Tech. Rep. Archives
    [Japanese] / [English] 
( Committee/Place/Topics  ) --Press->
 
( Paper Keywords:  /  Column:Title Auth. Affi. Abst. Keyword ) --Press->

All Technical Committee Conferences  (Searched in: Recent 10 Years)

Search Results: Conference Papers
 Conference Papers (Available on Advance Programs)  (Sort by: Date Descending)
 Results 1 - 7 of 7  /   
Committee Date Time Place Paper Title / Authors Abstract Paper #
MI 2023-03-06
16:00
Okinawa OKINAWA SEINENKAIKAN (Okinawa, Online)
(Primary: On-site, Secondary: Online)
Segmentation of renal cancers from multi-phase CT images by deep learning using selective fusion
Masanobu Gido (Tsukuba Univ.), Ryo Tanimoto, Kensaku Mori, Hideki Kakeya (Tsukuba Univ.) MI2022-92
Multiphase CT images are commonly used for the diagnosis of renal cancer. In this paper, we propose a machine learning s... [more] MI2022-92
pp.94-99
MI 2022-07-08
16:00
Hokkaido (Hokkaido, Online)
(Primary: On-site, Secondary: Online)
[Short Paper] Unsupervised Domain Adaptation for Liver Tumor Detection in Multi-Phase CT images Using Adversarial Learning with Maximum Square Loss
Rahul Kumar Jain (Ritsumeikan Univ.), Takahiro Sato, Taro Watasue, Tomohiro Nakagawa (tiwaki), Yutaro Iwamoto (Ritsumeikan Univ.), Xianhua Han (Yamaguchi Univ.), Lanfen Lin, Hongjie Hu (Zhejiang Univ.), Xiang Ruan (tiwaki), Yen-Wei Chen (Ritsumeikan Univ.) MI2022-37
Liver tumor detection in multi-phase CT images is essential in computer-aided diagnosis. Deep learning has been widely ... [more] MI2022-37
pp.22-23
MI 2022-07-08
16:20
Hokkaido (Hokkaido, Online)
(Primary: On-site, Secondary: Online)
[Short Paper] Multi-phase CT Image Segmentation with Single-Phase Annotation Using Adversarial Unsupervised Domain Adaptation
Swathi Ananda, Yutaro Iwamoto (Ritsumeikan Univ.), Xianhua HAN (Yamaguchi Univ.), Lanfen Lin, Hongjie Hu (Zhejiang Univ.), Yen-Wei Chen (Ritsumeikan Univ.) MI2022-38
Multi-phase computed tomography (CT) images are widely used for the diagnosis of liver disease, since different phase ha... [more] MI2022-38
pp.24-25
MI 2022-01-26
14:05
Online Online (Online) [Short Paper] Joint Learning for Multi-Phase CT Image Registration and Automatic Recognition of Anatomical Structures Based on a Deep Neural Network
Ryotaro Fuwa, Xiangrong Zhou, Takeshi Hara, Hiroshi Fujita (Gifu Univ.) MI2021-64
Computer-aided diagnosis (CAD) systems require image registration and automatic recognition of anatomical structures on ... [more] MI2021-64
pp.82-85
PRMU 2021-12-17
15:30
Online Online (Online) [Short Paper] Prediction Model of Early Recurrence of Hepatocellular Carcinoma Based on Deep Learning with Attention Module
Weibin Wang (Ritsumeikan Univ.), Fang Wang, Qingqing Chen (Zhejiang Univ.), Yutaro Iwamoto (Ritsumeikan Univ.), Xianhua Han (Yamaguchi Univ.), Yen-wei Chen (Ritsumeikan Univ.) PRMU2021-59
Early recurrence of hepatocyte carcinoma (HCC) will still lead to a decrease in the survival rate of patients who have a... [more] PRMU2021-59
pp.195-198
MI 2020-09-03
11:30
Online Online (Online) [Short Paper] Automatic Segmentation of Liver Tumor in Multi- phase CT Images by Attention Mask R-CNN
Ryo Hasegawa, Yutaro Iwamoto (Rits Univ.), Lanfen Lin, Hongjie Hu (Zhejiang University), Yen-Wei Chen (Rits Univ.) MI2020-25
Tumor detection and segmentation are essential pretreatment steps in computer-aided diagnosis of liver tumors. In this s... [more] MI2020-25
pp.35-38
PRMU, IBISML, IPSJ-CVIM [detail] 2018-09-21
10:00
Fukuoka (Fukuoka) [Short Paper] Computer-Aided Diagnosis of Liver Cancers Using Deep Learning with Fine-tuning
Weibin Wang (Ritsumeikan Univ.), Dong Liang, Lanfen Lin, Hongjie Hu, Qiaowei Zhang, Qingqing Chen (Zhejiang Univ.), Yutaro lwamoto, Xianhua Han, Yen-Wei Chen (Ritsumeikan Univ.) PRMU2018-57 IBISML2018-34
Liver cancer is one of the leading causes of death world-wide. Computer-aided diagnosis plays an important role in liver... [more] PRMU2018-57 IBISML2018-34
pp.139-140
 Results 1 - 7 of 7  /   
Choose a download format for default settings. [NEW !!]
Text format pLaTeX format CSV format BibTeX format
Copyright and reproduction : All rights are reserved and no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Notwithstanding, instructors are permitted to photocopy isolated articles for noncommercial classroom use without fee. (License No.: 10GA0019/12GB0052/13GB0056/17GB0034/18GB0034)


[Return to Top Page]

[Return to IEICE Web Page]


The Institute of Electronics, Information and Communication Engineers (IEICE), Japan