IEICE Technical Committee Submission System
Conference Schedule
Online Proceedings
[Sign in]
Tech. Rep. Archives
    [Japanese] / [English] 
( Committee/Place/Topics  ) --Press->
 
( Paper Keywords:  /  Column:Title Auth. Affi. Abst. Keyword ) --Press->

All Technical Committee Conferences  (Searched in: All Years)

Search Results: Conference Papers
 Conference Papers (Available on Advance Programs)  (Sort by: Date Descending)
 Results 1 - 13 of 13  /   
Committee Date Time Place Paper Title / Authors Abstract Paper #
EMM, BioX, ISEC, SITE, ICSS, HWS, IPSJ-CSEC, IPSJ-SPT [detail] 2023-07-25
09:00
Hokkaido Hokkaido Jichiro Kaikan CNN-Based Iris Recognition Using Multi-spectral Iris Images
Ryosuke Kuroda, Tetsuya Honda, Hironobu Takano (Toyama Prefectural Univ.) ISEC2023-36 SITE2023-30 BioX2023-39 HWS2023-36 ICSS2023-33 EMM2023-36
Iris recognition using a near-infrared camera is generally known as a biometric authentication method with high accuracy... [more] ISEC2023-36 SITE2023-30 BioX2023-39 HWS2023-36 ICSS2023-33 EMM2023-36
pp.147-151
IE, ITS, ITE-MMS, ITE-ME, ITE-AIT [detail] 2023-02-21
15:45
Hokkaido Hokkaido Univ. A Residual U-Net Architecture for Shuttlecock Detection
Muhammad Abdul Haq (TMU), Shuhei Tarashima (NTT Com), Norio Tagawa (TMU)
Detection of fast-moving shuttlecocks is essential for badminton video analysis. Several methods based on deep learning ... [more]
SIP, BioX, IE, MI, ITE-IST, ITE-ME [detail] 2022-05-20
17:00
Kumamoto Kumamoto University Kurokami Campus
(Primary: On-site, Secondary: Online)
Deformable registration of 3D medical images with Deep Residual UNet
Taiga Nakamura, Yuki Sato, Hiroyuki Kudo, Hotaka Takizawa (Univ. of Tsukuba) SIP2022-30 BioX2022-30 IE2022-30 MI2022-30
(To be available after the conference date) [more] SIP2022-30 BioX2022-30 IE2022-30 MI2022-30
pp.156-160
IBISML 2022-01-17
10:40
Online Online Automatic Makeup Transfer with GANs and Its Quantitative Evaluation
Cuilin Wang, Jun'ichi Takeuchi (Kyushu Univ.) IBISML2021-20
Transferring makeup from a reference image with makeup to a source image without makeup has a wide range of application ... [more] IBISML2021-20
pp.17-22
IMQ 2021-10-22
13:45
Osaka Osaka Univ. A Tiny Convolutional Neural Network for Image Super-Resolution
Kazuya Urazoe, Nobutaka Kuroki, Yu Kato, Shinya Ohtani (Kobe Univ.), Tetsuya Hirose (Osaka Univ.), Masahiro Numa (Kobe Univ.) IMQ2021-7
This paper surveys three techniques for reducing computational costs of convolutional neural network (CNN) for image sup... [more] IMQ2021-7
pp.2-7
NC, MBE
(Joint)
2021-03-03
13:25
Online Online Visualization of CNNs using Preferred Stimulus in Receptive Fields
Genta Kobayashi, Hayaru Shouno (UEC) NC2020-47
Convolutional neural networks have shown high performance at image processing task, and
they are interpreted by variou... [more]
NC2020-47
pp.25-30
MI 2019-01-23
14:00
Okinawa   Segmentation for diffuse lung disease opacities on CT images using U-Net and residual U-Net
Kanako Murakami, Shoji Kido, Yasushi Hirano, Shingo Mabu (Yamaguchi Univ.), Kenji Kondo (AIST/Panasonic), Jun Ozawa (AIST) MI2018-102
Segmentation is important for diagnosis of diffuse lung diseases (DLD) as same as classification. In recent years, a lot... [more] MI2018-102
pp.175-179
RCS, AP
(Joint)
2018-11-22
11:00
Okinawa Okinawa Industry Support Center A simple evaluation method of residual aberration in reflect arrays
Aoi Kotoura, Shigeru Makino, Yoshimi Sunaga (KIT), Michio Takikawa, Hiromasa Nakajima (Mitsubishi Electric) AP2018-132
In the conventional method of evaluating the phase error frequency characteristic, the relationship between the phase er... [more] AP2018-132
pp.171-175
IE 2018-06-29
10:20
Okinawa   Single-image Rain Removal Using Residual Deep Learning
Takuro Matsui, Masaaki Ikehara, Takanori Fujisawa (Keio Univ.) IE2018-23
Most outdoor vision systems can be influenced by rainy weather conditions. In this paper, we address a rain removal prob... [more] IE2018-23
pp.13-18
SANE 2017-08-24
13:50
Osaka OIT UMEDA Campus Deep Learning for Target Classification from SAR Imagery -- Data Augmentation and Translation Invariance --
Hidetoshi Furukawa (Toshiba Infrastructure Systems & Solutions) SANE2017-30
This report deals with translation invariance of convolutional neural networks (CNNs) for automatic target recognition (... [more] SANE2017-30
pp.13-17
PRMU, IBISML, IPSJ-CVIM [detail] 2015-09-15
14:30
Ehime   Image-based Face Modeling from Few Images Using Augmented Eigenface
Hisayoshi Chugan, Tsuyoshi Fukuda, Takeshi Shakunaga (Okayama Univ.) PRMU2015-87 IBISML2015-47
A real-time face tracking and recognition system was proposed by Oka and Shakunaga [1], [2]. In their system, 24 images ... [more] PRMU2015-87 IBISML2015-47
pp.143-148
PRMU, MVE, IPSJ-CVIM [detail] 2011-01-21
15:45
Shiga   High Frequency Compensated Face Hallucination Method
So Sasatani, Xian-Hua Han, Motonori Ohashi, Yutaro Iwamoto, Yen-Wei Chen (Ritsumeikan Univ.) PRMU2010-189 MVE2010-114
Face Hallucination method is one of learning-based super-resolution techniques, which can reconstruct a high-resolution ... [more] PRMU2010-189 MVE2010-114
pp.323-328
EID, ITE-IDY 2009-07-23
15:00
Tokyo Kikai-Shinko-Kaikan Bldg. Analysis of Impurity Ion Affecting Image Sticking Effect on Liquid Crystal Display
Masanobu Mizusaki, Tetsuya Miyashita, Tatsuo Uchida (Tohoku Univ.), Yuichiro Yamada (Sharp. Corp.) EID2009-15
Image sticking can be observed in some case and it degrades the image quality of liquid crystal (LC) display. The image... [more] EID2009-15
pp.13-16
 Results 1 - 13 of 13  /   
Choose a download format for default settings. [NEW !!]
Text format pLaTeX format CSV format BibTeX format
Copyright and reproduction : All rights are reserved and no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Notwithstanding, instructors are permitted to photocopy isolated articles for noncommercial classroom use without fee. (License No.: 10GA0019/12GB0052/13GB0056/17GB0034/18GB0034)


[Return to Top Page]

[Return to IEICE Web Page]


The Institute of Electronics, Information and Communication Engineers (IEICE), Japan