Online edition: ISSN 2432-6380
[TOP] | [2016] | [2017] | [2018] | [2019] | [2020] | [2021] | [2022] | [Japanese] / [English]
IBISML2019-1
Reliability Assessment by Bayesian Deep Learning for Image-Caption Retrieval Task
Kenta Hama, Takashi Matsubara, Kuniaki Uehara (Kobe Univ.)
pp. 1 - 8
IBISML2019-2
Adversarial Day-to-Night Conversion Supporting Object Detection for Autonomous Driving
Kazuki Fujioka (Kobe Univ.), Takashi Machida (Toyota CRDL), Takashi Matsubara, Kuniaki Uehara (Kobe Univ.)
pp. 9 - 14
IBISML2019-3
Aleatoric Uncertainty-Aware Score for Deep Unsupervised Anomaly Segmentation
Kazuki Sato, Kenta Hama, Takashi Matsubara, Kuniaki Uehara (Kobe Univ.)
pp. 15 - 20
IBISML2019-4
Triple GANs with adversarial disturbances for discriminative anomaly detection
Hirotaka Hachiya (Wakayama Univ.)
pp. 21 - 26
IBISML2019-5
A model selection criterion for LASSO estimate with scaling
Katsuyuki Hagiwara (Mie Univ.)
pp. 27 - 34
IBISML2019-6
Optimal Estimating the Number of Change Points for Sources with Piecewise Constant parameters under Bayesian Criterion
Kairi Suzuki, Akira Kamatsuka, Toshiyasu Matsushima (Waseda Univ.)
pp. 35 - 41
IBISML2019-7
A Comparison of Surrogate Models in Bayesian Optimization
Sho Shimoyama (Meiji Univ.), Masahiro Nomura (CA)
pp. 43 - 50
IBISML2019-8
Imputation of Missing Time-Series Multimodal Data with Variational Autoencoder
Ryoichi Kojima, Shinya Wada, Kiyohito Yoshihara (KDDI Research)
pp. 51 - 55
IBISML2019-9
Adaptive Discretization based Predictive Sequence Mining for Continuous Time Series
Yoshikazu Shibahara, Takuto Sakuma (NIT), Ichiro Takeuchi (NIT/RIKEN/NIMS), Masayuki Karasuyama (NIT/NIMS)
pp. 57 - 64
IBISML2019-10
Predicting Demographic Attributes for Individual Viewing Behavior
Yusuke Kumagae, Ryoma Yasunaga, Ryo Fujii, Ryo Domoto (Hakuhodo)
pp. 65 - 71
IBISML2019-11
Spatial-Temporal decomposition to resting and task MEG using DMD
Fumiya Nakai (NAIST), Okito Yamashita (ATR)
pp. 73 - 78
IBISML2019-12
A sleep state analysis from calcium imaging data using non-negative matrix factorization
Mizuo Nagayama, Toshimitsu Aritake (Waseda Univ.), Hideitsu Hino (ISM), Takeshi Kanda, Takehiro Miyazaki, Masashi Yanagisawa (Univ. of Tsukuba), Shotaro Akaho (AIST), Noboru Murata (Waseda Univ.)
pp. 79 - 83
IBISML2019-13
Detection of Syntactic Anomalies in Spoken Sentences from Single-trial EEG Signals with Neural Networks
Shunnosuke Motomura, Hiroki Tanaka, Satoshi Nakamura (NAIST)
pp. 85 - 90
IBISML2019-14
Hybrid Reinforcement and Imitation Learning for Human-Like Agents
Rousslan Fernand Julien Dossa, Xinyu Lian (Kobe Uni), Hirokazu Nomoto (EQUOS RESEARCH), Takashi Matsubara, Kuniaki Uehara (Kobe Uni)
pp. 91 - 96
IBISML2019-15
Additive or Concatenating Skip-connections Overcome the Degradation Problem of the Classic Feedforward Neural Network
Yasutaka Furusho, Kazushi Ikeda (NAIST)
pp. 97 - 102
IBISML2019-16
ResNet and Batch-normalization Improve Data Separation Ability
Yasutaka Furusho, Kazushi Ikeda (NAIST)
pp. 103 - 108
IBISML2019-17
Theoretical Analysis of the Fixup Initialization for Fast Convergence and High Generalization Ability
Yasutaka Furusho, Kazushi Ikeda (NAIST)
pp. 109 - 114
Note: Each article is a technical report without peer review, and its polished version will be published elsewhere.