Online edition: ISSN 2432-6380
[TOP] | [2018] | [2019] | [2020] | [2021] | [2022] | [2023] | [2024] | [Japanese] / [English]
KBSE2022-31
Investigation of Bad Smells for Machine Learning Projects
Hironori Takeuchi (Musashi Univ.), Shinpei Ogata (Shinshu Univ.), Haruhiko Kaiya (Kanagawa Univ.), Hiroyuki Nakagawa (Osaka Univ.)
pp. 1 - 6
KBSE2022-32
Proposal of Requirement Traceability Model for Agile Development
Hideaki Kodama, Kou Toriyabe, Yutaka Matsuno (Nihon Univ.)
pp. 7 - 12
KBSE2022-33
Fraud Service Analysis with Functional Aspect Relationship Matrix
Shuichiro Yamamoto (IPUT in Nagoya)
pp. 13 - 18
KBSE2022-34
Study of Analyzing Agent-Conversation Logs Toward Self-Aid Support for In-Home Elderly People
Kazuki Unigame, Masahide Nakamura (Kobe Univ.), Sachio Saiki (KUT), Sinan Chen (Kobe Univ.), Kiyoshi Yasuda (OIT)
pp. 19 - 24
KBSE2022-35
Study of ALPS support rule recommendation method based on life logs of elderly people at home.
-- Utilization of location and time based on motion sensor logs --
Takumi Akashi, Masahide Nakamura (Kobe Univ.), Sachio Saiki (Kochi Univ. of Tech.), Kiyoshi Yasuda (OIT), Sinan Chen (Kobe Univ.)
pp. 25 - 30
KBSE2022-36
Fitness Evaluation Based on 3D Model Generation System by Fractal Model and Genetic Algorithm
Kaito Watanabe, Naoto Hoshikawa (NIT, Oyama College), Hirotaka Nakayama (NAOJ), Tomoyoshi Ito, Atushi Shiraki (Chiba Univ)
pp. 31 - 36
KBSE2022-37
Proposal of method for extracting goals from specifications based on questions about the direction of the text
Keitaro Watanabe, Hiroyuki Nakagawa, Tatsuhiro Tsuchiya (Osaka Univ.)
pp. 37 - 42
KBSE2022-38
Analysis of Parrondo's Paradox using a probabilistic model checker
Naoki Nishiguchi, Hiroyuki Nakagawa, Tatsuhiro Tsuchiya (Osaka Univ.)
pp. 43 - 47
KBSE2022-39
Soshi Nitta, Hiroyuki Nakagawa (Osaka Univ.), Shinpei Ogata (Shinshu Univ.), Hironori Takeuchi (Musashi Univ.), Haruhiko Kaiya (Kanagawa Univ.), Tatsuhiro Tsuchiya (Osaka Univ.)
pp. 48 - 53
KBSE2022-40
Proposal of FPGA logic change after service launch for environment adapation
Yoji Yamato (NTT)
pp. 54 - 59
KBSE2022-41
Smoothing methods for reducing false positives in performance anomaly detection using machine learning
Taku Wakui, Mineyoshi Masuda (Hitachi)
pp. 60 - 65
KBSE2022-42
(See Japanese page.)
pp. 66 - 70
Note: Each article is a technical report without peer review, and its polished version will be published elsewhere.