講演抄録/キーワード |
講演名 |
2017-09-15 10:00
Quantum-Inspired Regression Forest ○Zeke Xie・Issei Sato(UTokyo) PRMU2017-40 IBISML2017-12 |
抄録 |
(和) |
We propose a Quantum-Inspired Subspace(QIS) Ensemble Method for generating feature ensembles based on feature selections. We assign each principal component a Fraction Transition Probability as its probability weight based on Principal Component Analysis and quantum interpretations. In order to generate the feature subset for each base regressor, we select a feature subset from principal components based on Fraction Transition Probabilities. The idea originating from quantum mechanics can encourage ensemble diversity and the accuracy simultaneously. We incorporate Quantum-Inspired Subspace Method into Random Forest and propose Quantum-Inspired Forest. We theoretically prove that the quantum interpretation corresponds to the first order approximation of ensemble regression. We also evaluate the empirical performance of Quantum-Inspired Forest and Random Forest in multiple hyperparameter settings. Quantum-Inspired Forest prove the significant robustness of the default hyperparameters on most data sets. The contribution of this work is two-fold, a novel ensemble regression algorithm inspired by quantum mechanics and the theoretical connection between quantum interpretations and machine learning algorithms. |
(英) |
We propose a Quantum-Inspired Subspace(QIS) Ensemble Method for generating feature ensembles based on feature selections. We assign each principal component a Fraction Transition Probability as its probability weight based on Principal Component Analysis and quantum interpretations. In order to generate the feature subset for each base regressor, we select a feature subset from principal components based on Fraction Transition Probabilities. The idea originating from quantum mechanics can encourage ensemble diversity and the accuracy simultaneously. We incorporate Quantum-Inspired Subspace Method into Random Forest and propose Quantum-Inspired Forest. We theoretically prove that the quantum interpretation corresponds to the first order approximation of ensemble regression. We also evaluate the empirical performance of Quantum-Inspired Forest and Random Forest in multiple hyperparameter settings. Quantum-Inspired Forest prove the significant robustness of the default hyperparameters on most data sets. The contribution of this work is two-fold, a novel ensemble regression algorithm inspired by quantum mechanics and the theoretical connection between quantum interpretations and machine learning algorithms. |
キーワード |
(和) |
/ / / / / / / |
(英) |
Supervised Learning / Ensemble Method / Regression Tree / Feature Selection / Quantum Physics / / / |
文献情報 |
信学技報, vol. 117, no. 211, IBISML2017-12, pp. 7-17, 2017年9月. |
資料番号 |
IBISML2017-12 |
発行日 |
2017-09-08 (PRMU, IBISML) |
ISSN |
Print edition: ISSN 0913-5685 Online edition: ISSN 2432-6380 |
著作権に ついて |
技術研究報告に掲載された論文の著作権は電子情報通信学会に帰属します.(許諾番号:10GA0019/12GB0052/13GB0056/17GB0034/18GB0034) |
PDFダウンロード |
PRMU2017-40 IBISML2017-12 |