講演抄録/キーワード |
講演名 |
2022-06-27 17:25
順序回帰のための全変動正則化付き加法累積ロジットモデル ○伊従寛哉・松島 慎(東大) NC2022-8 IBISML2022-8 |
抄録 |
(和) |
医学研究や社会科学などの実質科学分野ではデータが順序尺度で得られることが少なくない.
目的変数がこのような順序尺度で与えられるような問題を順序回帰とよび,回帰問題とも分類問題とも違った特徴を持つ.
順序回帰問題の教師あり学習においては,未知のデータに対する予測性能の高さとともに,学習したモデルが解釈性を持つことも重要である.
本稿では解釈性と予測性能の両方に優れた全変動正則化付きの加法モデルを順序回帰問題に対して拡張し,予測性能と解釈性の両方に優れている全変動正則化付き加法累積ロジットモデル(TVACLM)を提案する. |
(英) |
In many fields such as medical research and social science, data on an ordinal scale are often obtained.
Problems in which the target variable is given on the ordinal scale are called ordinal regression. Ordinal regression has different characteristics from those of regression and classification problems.
In supervised learning of the ordinal regression problems, interpretability of the learned model is very important as well as its predictive performance.
In this paper, we extend the generalized additive model with total variation regularization to ordinal regression problems and propose a additive cumulative logit model with total varition regularization (TVACLM) that achieves good performance in both perspectives from interpretability and prediction. |
キーワード |
(和) |
順序回帰 / 解釈性 / 加法モデル / 全変動正則化 / / / / |
(英) |
Ordinal regression / interpretability / additive model / total variation regularization / / / / |
文献情報 |
信学技報, vol. 122, no. 90, IBISML2022-8, pp. 69-75, 2022年6月. |
資料番号 |
IBISML2022-8 |
発行日 |
2022-06-20 (NC, IBISML) |
ISSN |
Online edition: ISSN 2432-6380 |
著作権に ついて |
技術研究報告に掲載された論文の著作権は電子情報通信学会に帰属します.(許諾番号:10GA0019/12GB0052/13GB0056/17GB0034/18GB0034) |
PDFダウンロード |
NC2022-8 IBISML2022-8 |
研究会情報 |
研究会 |
NC IBISML IPSJ-BIO IPSJ-MPS |
開催期間 |
2022-06-27 - 2022-06-29 |
開催地(和) |
琉球大学50周年記念館 |
開催地(英) |
|
テーマ(和) |
機械学習によるバイオデータマイニング、一般 |
テーマ(英) |
|
講演論文情報の詳細 |
申込み研究会 |
IBISML |
会議コード |
2022-06-NC-IBISML-BIO-MPS |
本文の言語 |
日本語 |
タイトル(和) |
順序回帰のための全変動正則化付き加法累積ロジットモデル |
サブタイトル(和) |
|
タイトル(英) |
Additive Cumulative Link Model with Total Variation Regularization for Ordinal Regression |
サブタイトル(英) |
|
キーワード(1)(和/英) |
順序回帰 / Ordinal regression |
キーワード(2)(和/英) |
解釈性 / interpretability |
キーワード(3)(和/英) |
加法モデル / additive model |
キーワード(4)(和/英) |
全変動正則化 / total variation regularization |
キーワード(5)(和/英) |
/ |
キーワード(6)(和/英) |
/ |
キーワード(7)(和/英) |
/ |
キーワード(8)(和/英) |
/ |
第1著者 氏名(和/英/ヨミ) |
伊従 寛哉 / Hiroya Iyori / イヨリ ヒロヤ |
第1著者 所属(和/英) |
東京大学 (略称: 東大)
the University of Tokyo (略称: Univ. of Tokyo) |
第2著者 氏名(和/英/ヨミ) |
松島 慎 / Shin Matsushima / マツシマ シン |
第2著者 所属(和/英) |
東京大学 (略称: 東大)
the University of Tokyo (略称: Univ. of Tokyo) |
第3著者 氏名(和/英/ヨミ) |
/ / |
第3著者 所属(和/英) |
(略称: )
(略称: ) |
第4著者 氏名(和/英/ヨミ) |
/ / |
第4著者 所属(和/英) |
(略称: )
(略称: ) |
第5著者 氏名(和/英/ヨミ) |
/ / |
第5著者 所属(和/英) |
(略称: )
(略称: ) |
第6著者 氏名(和/英/ヨミ) |
/ / |
第6著者 所属(和/英) |
(略称: )
(略称: ) |
第7著者 氏名(和/英/ヨミ) |
/ / |
第7著者 所属(和/英) |
(略称: )
(略称: ) |
第8著者 氏名(和/英/ヨミ) |
/ / |
第8著者 所属(和/英) |
(略称: )
(略称: ) |
第9著者 氏名(和/英/ヨミ) |
/ / |
第9著者 所属(和/英) |
(略称: )
(略称: ) |
第10著者 氏名(和/英/ヨミ) |
/ / |
第10著者 所属(和/英) |
(略称: )
(略称: ) |
第11著者 氏名(和/英/ヨミ) |
/ / |
第11著者 所属(和/英) |
(略称: )
(略称: ) |
第12著者 氏名(和/英/ヨミ) |
/ / |
第12著者 所属(和/英) |
(略称: )
(略称: ) |
第13著者 氏名(和/英/ヨミ) |
/ / |
第13著者 所属(和/英) |
(略称: )
(略称: ) |
第14著者 氏名(和/英/ヨミ) |
/ / |
第14著者 所属(和/英) |
(略称: )
(略称: ) |
第15著者 氏名(和/英/ヨミ) |
/ / |
第15著者 所属(和/英) |
(略称: )
(略称: ) |
第16著者 氏名(和/英/ヨミ) |
/ / |
第16著者 所属(和/英) |
(略称: )
(略称: ) |
第17著者 氏名(和/英/ヨミ) |
/ / |
第17著者 所属(和/英) |
(略称: )
(略称: ) |
第18著者 氏名(和/英/ヨミ) |
/ / |
第18著者 所属(和/英) |
(略称: )
(略称: ) |
第19著者 氏名(和/英/ヨミ) |
/ / |
第19著者 所属(和/英) |
(略称: )
(略称: ) |
第20著者 氏名(和/英/ヨミ) |
/ / |
第20著者 所属(和/英) |
(略称: )
(略称: ) |
第21著者 氏名(和/英/ヨミ) |
/ / |
第21著者 所属(和/英) |
(略称: )
(略称: ) |
第22著者 氏名(和/英/ヨミ) |
/ / |
第22著者 所属(和/英) |
(略称: )
(略称: ) |
第23著者 氏名(和/英/ヨミ) |
/ / |
第23著者 所属(和/英) |
(略称: )
(略称: ) |
第24著者 氏名(和/英/ヨミ) |
/ / |
第24著者 所属(和/英) |
(略称: )
(略称: ) |
第25著者 氏名(和/英/ヨミ) |
/ / |
第25著者 所属(和/英) |
(略称: )
(略称: ) |
第26著者 氏名(和/英/ヨミ) |
/ / |
第26著者 所属(和/英) |
(略称: )
(略称: ) |
第27著者 氏名(和/英/ヨミ) |
/ / |
第27著者 所属(和/英) |
(略称: )
(略称: ) |
第28著者 氏名(和/英/ヨミ) |
/ / |
第28著者 所属(和/英) |
(略称: )
(略称: ) |
第29著者 氏名(和/英/ヨミ) |
/ / |
第29著者 所属(和/英) |
(略称: )
(略称: ) |
第30著者 氏名(和/英/ヨミ) |
/ / |
第30著者 所属(和/英) |
(略称: )
(略称: ) |
第31著者 氏名(和/英/ヨミ) |
/ / |
第31著者 所属(和/英) |
(略称: )
(略称: ) |
第32著者 氏名(和/英/ヨミ) |
/ / |
第32著者 所属(和/英) |
(略称: )
(略称: ) |
第33著者 氏名(和/英/ヨミ) |
/ / |
第33著者 所属(和/英) |
(略称: )
(略称: ) |
第34著者 氏名(和/英/ヨミ) |
/ / |
第34著者 所属(和/英) |
(略称: )
(略称: ) |
第35著者 氏名(和/英/ヨミ) |
/ / |
第35著者 所属(和/英) |
(略称: )
(略称: ) |
第36著者 氏名(和/英/ヨミ) |
/ / |
第36著者 所属(和/英) |
(略称: )
(略称: ) |
講演者 |
第1著者 |
発表日時 |
2022-06-27 17:25:00 |
発表時間 |
25分 |
申込先研究会 |
IBISML |
資料番号 |
NC2022-8, IBISML2022-8 |
巻番号(vol) |
vol.122 |
号番号(no) |
no.89(NC), no.90(IBISML) |
ページ範囲 |
pp.69-75 |
ページ数 |
7 |
発行日 |
2022-06-20 (NC, IBISML) |