Online edition: ISSN 2432-6380
[TOP] | [2018] | [2019] | [2020] | [2021] | [2022] | [2023] | [2024] | [Japanese] / [English]
RECONF2022-26
Efficient Learning of Spiking Neural Networks with Genetic Algorithm and its FPGA Acceleration
Taiki Watanabe, Yukinori Sato (TUT)
pp. 1 - 6
RECONF2022-27
Simulation for a CNN implementation on a multi-FPGA system with system-C description
Shao Ningyu, Hiroaki Suzuki (Keio Univ.), Wataru Takahashi (NEC), Kazutoshi Wakabayashi (Tokyo Univ.), Hideharu Amano (Keio Univ.)
pp. 7 - 12
RECONF2022-28
(See Japanese page.)
pp. 13 - 14
RECONF2022-29
(See Japanese page.)
pp. 15 - 16
RECONF2022-30
(See Japanese page.)
pp. 17 - 18
RECONF2022-31
(See Japanese page.)
pp. 19 - 20
RECONF2022-32
[Short Paper]
Zuquan Qin, Weu Kaijie, Hideharu Amano (Keio Univ.), Kazuhiro Nakadai (TIT)
pp. 21 - 22
RECONF2022-33
FPGA implementation of small area sum-of-products arithmetic unit for Posit and consideration of its introduction into AI chip ReNA
Yasuhiro Nakahara, Yuta Masuda, Masato Kiyama, Masahiro Iida (Kumamoto Univ.)
pp. 23 - 28
RECONF2022-34
Proposal and evaluation of Combined Posit MAC unit (CPMAC) for both DNN inference and training
Yuta Masuda, Yasuhiro Nakahara, Masato Kiyama, Masahiro Iida (Kumamoto Univ.)
pp. 29 - 34
RECONF2022-35
(See Japanese page.)
pp. 35 - 40
RECONF2022-36
(See Japanese page.)
pp. 41 - 46
RECONF2022-37
(See Japanese page.)
pp. 47 - 52
RECONF2022-38
(See Japanese page.)
pp. 53 - 56
RECONF2022-39
Takuya Kojima, Kaito Kokubu, Makoto Saito, Yuna Tomida, Shion Maeda (UTokyo)
pp. 57 - 58
RECONF2022-40
(See Japanese page.)
pp. 59 - 60
RECONF2022-41
(See Japanese page.)
pp. 61 - 62
Note: Each article is a technical report without peer review, and its polished version will be published elsewhere.