Online edition: ISSN 2432-6380
[TOP] | [2018] | [2019] | [2020] | [2021] | [2022] | [2023] | [2024] | [Japanese] / [English]
MI2021-9
Automated detection of malignant tumors on PET/CT images using convolutional neural networks and statistical images
Takumi Aihara (Gifu Univ.), Masaki Matsusako (St.Luke's International Hospital), Takeshi Hara (Gifu Univ.), Taiki Nozaki (St.Luke's International Hospital), Tetsuro Katafuchi (Gifu University of Medical Science), Satoshi Ito, Masaya Kato (Daiyukai General Hospital), Xiangrong Zhou, Hiroshi Fujita (Gifu Univ.)
pp. 1 - 6
MI2021-10
[Short Paper]
Performance comparison of multiple deep CNN methods for multiple organ detection in CT images
Daiki Kanoh, Xiangrong Zhou, Takeshi Hara, Hiroshi Fujita (Gifu Univ.)
pp. 7 - 10
MI2021-11
Unsupervised deep learning with low-rank and sparse priors for blood vessel enhancement from free-breathing angiography
Ryoji Ishibashi, Tomoya Sakai (Nagasaki Univ.), Hideaki Haneishi (Chiba Univ.)
pp. 11 - 14
MI2021-12
Extraction of Calcified Regions from OCT Images Using Deep Learning
Ryo Oikawa, Toru Kato, Akio Doi, Basabi Chakraborty (Iwate Prefectural Univ.), Masaru Ishida (Iwate Medical Univ.)
pp. 15 - 19
MI2021-13
[Short Paper]
Renal tumor analysis using multi-temporal abdominal CT images
Kento Nishihira, Hidenobu Suzuki, Mikio Matsuhiro, Yoshiki Kawata, Noboru Niki (Tokushima Univ.), Atsushi ikeda (Tsukuba Univ.)
pp. 20 - 22
MI2021-14
[Special Talk]
How to survive: will medical imaging societies survive in the AI era?
-- A new sketch of Computer Aided diagnosis and CAD challenges --
Shigeru Nawano (Shinmatsudo CG Hosp. hosp.)
pp. 23 - 24
MI2021-15
Applying Convolutional Network to Predict Pathology of Postchemotherapy Retroperitoneal Nodal Masses in Germ Cell tumors
Yoshimasa Iwano, Satoshi Nitta (Univ. of Tsukuba), Takahiro Kojima (Aichi Cancer Center), Hideki Kakeya (Univ. of Tsukuba)
pp. 25 - 30
MI2021-16
[Short Paper]
Construction of Subtype Classifier for Malignant Lymphoma based on H&E-stained Images using Immuno-stainning Data
Yuki Hirono (NIT), Noriaki Hashimoto (RIKEN), Kugler Mauricio, Tatsuya Yokota (NIT), Miharu Nagaishi (Kurume Univ.), Hiroaki Miyoshi, Koichi Oshima (Kurume Univ./JSP), Ichiro Takeuchi (NIT/RIKEN), Hidekata Hontani (NIT)
pp. 31 - 32
MI2021-17
[Short Paper]
Multi-modal Adaptive Fusion Transformer Network for Estimation of Depression Level
Jiaqing Liu, Shurong Chai (Ritsumei), Hao Sun (Zheda), Xin-Yin Huang (Soochow University), LanFen Lin (Zheda), Tomoko Tateyama (Shiga University), Yutaro Iwamoto, Yen-Wei Chen (Ritsumei)
pp. 33 - 35
MI2021-18
Study of chest x-ray image screening with deep learning for medical checkup
Tomohiko Shimoyama (Canon ITS Medical), Tadashi Sugiyama, Yahata Takeshi, Taro Yamazaki, Tomoaki Yoshida (Public Health Research), Takeshi Washiashi, Kazuki Takahashi, Toshihiro Konno (Canon ITS Medical), Yoshihiro Tamachi (Public Health Research)
pp. 36 - 41
MI2021-19
Severity determination of chest CT data in tuberculosis patients using deep learning
Tetsuya Asakawa, Riku Tsuneda (TUT), Kazuki Simizu, Takuyuki Komoda (THC), Masaki Aono (TUT)
pp. 42 - 46
MI2021-20
Asynchrony analysis of diaphragmatic movement for evaluation of respiratory dynamics in COPD patients
Xiao Tan (Chiba Univ.), Yuma Iwao (QST), Chen Ye, Kotaro Takahashi (Chiba Univ.), Yoshitada Masuda (Chiba Univ. Hospital), Ayako Shimada, Naoko Kawata, Hideaki Haneishi (Chiba Univ.)
pp. 47 - 51
Note: Each article is a technical report without peer review, and its polished version will be published elsewhere.