IEICE Technical Report

Online edition: ISSN 2432-6380

Volume 120, Number 407

Software Science

Workshop Date : 2021-03-03 - 2021-03-04 / Issue Date : 2021-02-24

[PREV] [NEXT]

[TOP] | [2017] | [2018] | [2019] | [2020] | [2021] | [2022] | [2023] | [Japanese] / [English]

[PROGRAM] [BULK PDF DOWNLOAD]


Table of contents

SS2020-28
Weighted Multiple Context-free Grammars and their Properties
Yusuke Inoue, Hiroyuki Seki (Nagoya Univ.)
pp. 1 - 6

SS2020-29
A Subclass of LTL with the Freeze Quantifier Translatable into Register Automata
Akira Onishi, Ryoma Senda (Nagoya Univ.), Yoshiaki Takata (KUT), Hiroyuki Seki (Nagoya Univ.)
pp. 7 - 12

SS2020-30
(See Japanese page.)
pp. 13 - 18

SS2020-31
(See Japanese page.)
pp. 19 - 24

SS2020-32
Analysis of the Impact of Automatically Generated Test Cases on the Results of Automatic Bug Repair
Yuga Matsuda, Kyosuke Yamate, Yasutaka Kamei, Naoyasu Ubayashi (Kyushu Univ.)
pp. 25 - 30

SS2020-33
(See Japanese page.)
pp. 31 - 36

SS2020-34
Performance Evaluation of Automatic Bug Repair using Neural Machine Translation with Bug Fix Histories
Gakuto Akiyama, Tsukasa Nakamura, Yasutaka Kamei, Naoyasu Ubayashi (Kyushu Univ.)
pp. 37 - 42

SS2020-35
Evaluation of Concept Drift Detection by monitoring Maximum Safe Radius
Naoto Sato, Hironobu Kuruma, Hideto Ogawa (Hitachi)
pp. 43 - 48

SS2020-36
Similar Problem Search Using Deep Learning for Supportintg Programming Education
Hiroki Yamamoto, Haruki Matsuo, Kentaro Okino, Yasutaka Kamei, Naoyasu Ubayashi (Kyushu Univ.)
pp. 49 - 54

SS2020-37

Tomoaki Tsuru, Tasuku Nakagawa, Shinsuke Matsumoto, Yoshiki Higo, Shinji Kusumoto (Osaka Univ.)
pp. 55 - 60

SS2020-38
(See Japanese page.)
pp. 61 - 66

SS2020-39
(See Japanese page.)
pp. 67 - 72

SS2020-40
(See Japanese page.)
pp. 73 - 77

SS2020-41
Generating Exhaustive Counterexample and Path Constraint with Software Analysis Workbench and Symbolic PathFinder
Rin Karashima, Shinpei Ogata, Kozo Okano (Shinshu Univ.)
pp. 78 - 83

SS2020-42
(See Japanese page.)
pp. 84 - 89

SS2020-43
A Reproducibility Support Tool Using Execution Log for Jupyter Notebook
Naotoshi Matsubara, Ken Matsui, Naoyasu Ubayashi, Yasutaka Kamei (Kyushu Univ.)
pp. 90 - 95

SS2020-44
(See Japanese page.)
pp. 96 - 101

SS2020-45
(See Japanese page.)
pp. 102 - 107

SS2020-46
Untangling Composite Changes Using Tree-based Convolution Neural Network
Cong Li, Takashi Kobayashi (Tokyo Tech)
pp. 108 - 113

Note: Each article is a technical report without peer review, and its polished version will be published elsewhere.


The Institute of Electronics, Information and Communication Engineers (IEICE), Japan