IEICE Technical Report

Online edition: ISSN 2432-6380

Volume 123, Number 411

Medical Imaging

Workshop Date : 2024-03-03 - 2024-03-04 / Issue Date : 2024-02-25

[PREV] [NEXT]

[TOP] | [2018] | [2019] | [2020] | [2021] | [2022] | [2023] | [2024] | [Japanese] / [English]

[PROGRAM] [BULK PDF DOWNLOAD]


Table of contents

MI2023-30
[Short Paper] Generation of Counterfactual Pathology Images of Malignant Lymphoma using Diffusion Models
Ryoichi Koga, Tatsuya Yokota (NIT), Kouichi Ohshima, Hiroaki Miyoshi, Miharu Nagaishi (Kurume Univ.), Noriaki Hashimoto (RIKEN), Ichiro Takeuchi (Nagoya Univ.), Hidekata Hontani (NIT)
pp. 1 - 2

MI2023-31
[Short Paper] Valid p-value for critical instances in multiple instance learning
Noriaki Hashimoto (RIKEN), Daiki Miwa (Nitech), Kosei Sumida (Nagoya Univ.), Hiroyuki Hanada (RIKEN), Hiroaki Miyoshi (Kurume Univ.), Jun Sakuma (Tokyo Tech/RIKEN), Hidekata Hontani (Nitech), Koichi Ohshima (Kurume Univ.), Ichiro Takeuchi (Nagoya Univ./RIKEN)
pp. 3 - 6

MI2023-32
Automatic generation of PET/CT images by using large multimodal model
Yasushi Hirano, Seiya Konomi, Haku Ishida (Yamaguchi Univ.), Shoji Kido (Osaka Univ.)
pp. 7 - 10

MI2023-33
A preliminary study on deep causal discovery model for image classification
Ryohei Motoda, Megumi Nakao (Kyoto Univ.)
pp. 11 - 14

MI2023-34
Deep Learning based Objective Microscopic Agglutination Test
Risa Nakano, Yuji Oyamada (Tottori Univ.), Ryo Ozuru (Fukuoka Univ.)
pp. 15 - 18

MI2023-35
Post-hoc Rotational Equivariantization of Large Scale Neural Network Model and Its Application
Kotaro Ogawa, Toyohiro Maki, Hidekata Hontani (NIT)
pp. 19 - 20

MI2023-36
[Short Paper] Electric field regression from head MR image by transformers for TMS
Toyohiro Maki, Tatsuya Yokota, Akimasa Hirata, Hidekata Hontani (NIT)
pp. 21 - 24

MI2023-37
[Short Paper] Pilot study of multitask learning for upper abdominal organ extraction and lesion detection on PET/CT images
Kohei Yoshida, Mitsutaka Nemoto, Kazuki Otani (Kindai Univ.), Hayato Kaida (KU Hosp), Yuichi Kimura, Takashi Nagaoka, Katsuhiro Mikami (Kindai Univ.), Takahiro Yamada, Kohei Hanaoka (KU Hosp), Tatsuya Tsuchitani, Kazuhiro Kitajima (HMU Hosp), Kazunari Ishii (KU Hosp)
pp. 25 - 27

MI2023-38
Evaluation of underspecification in a hot-spot detection support system of bone scintigrams -- Comparison of pre-market learning and post-market re-learning --
Keisuke Fujimoto (TUAT), Shigeaki Higashiyama, Joji Kawabe (OMU), Ryusuke Nakaoka (NIHS), Akinobu Shimizu (TUAT)
pp. 28 - 29

MI2023-39
(See Japanese page.)
pp. 30 - 31

MI2023-40
(See Japanese page.)
pp. 32 - 33

MI2023-41
[Short Paper] Recognition of Tooth Types in Dental Panoramic Radiographs Containing Deciduous Teeth Using CNN-based Object Detection
Koki Sakai (Gifu Univ.), Chisako Muramatsu (Shiga Univ.), Yuta Seino (Osaka Univ.), Ryo Takahashi, Tatsuro Hayashi (EyeTech), Wataru Nishiyama (Asahi Univ.), Xiangrong Zhou, Takeshi Hara (Gifu Univ.), Akitoshi Katsumata (Asahi Univ.), Hiroshi Fujita (Gifu Univ.)
pp. 34 - 35

MI2023-42
[Short Paper] Weak supervised chest lesion detection on FDG-PET/CT Images using Pix2Pix image modality translation
Kazuki Otani, Kohei Yoshida, Mitsutaka Nemoto (Kindai Univ.), Hayato Kaida (KU Hosp), Yuichi Kimura, Takashi Nagaoka, Katsuhiro Mikami (Kindai Univ.), Takahiro Yamada, Kohei Hanaoka (KU Hosp), Tsuchitani Tatsuya, Kazuhiro Kitajima (HMU Hosp), Kazunari Ishii (KU Hosp)
pp. 36 - 38

MI2023-43
[Short Paper] Detection and classification of coronary arterial and aortas in non-contrast CT images using 3D U-Net
Misaki Shono, Yoshiki Kawata (Tokushima Univ.), Toshihiko Sugiura, Nobuhiro Tanabe (Chiba Univ.), Kazuyoshi Marumo, Masahiko Kaneko (Tokyo Preventive Medicine Association), Noboru Niki (Medical Science Research Institute)
pp. 39 - 41

MI2023-44
[Special Talk] Deployment of a computer-aided diagnosis system for bone scintigrams and beyond
Akinobu Shimizu (TUAT)
p. 42

MI2023-45
[Invited Lecture] Latest Research Trends 2023: Computer-Assisted Intervention
Ken'ichi Morooka (Kumamoto Univ.)
pp. 43 - 44

MI2023-46
[Invited Lecture] Latest Research Trends 2023: Image Segmentation and General Overview of MICCAI
Masahiro Oda (Nagoya Univ.), Itaru Otomaru (Canon), Ryo Furukawa (Kindai Univ.), Kensaku Mori (Nagoya Univ.)
pp. 45 - 49

MI2023-47
[Invited Lecture] Latest Research Trends 2023: Pathological Image Analysis
Ryoma Bise (Kyushu Univ.)
pp. 50 - 52

MI2023-48
[Invited Lecture] Latest Research Trends 2023: Machine Learning for Medical Image Processing
Fukashi Yamazaki (Canon)
pp. 53 - 55

MI2023-49
[Invited Lecture] Latest Research Trends 2023: Image Registration
Otake Yoshito, Gu Yi (NAIST), Tanaka Toru (Canon)
pp. 56 - 58

MI2023-50
[Invited Lecture] Latest Research Trends 2023: neurobrain area and diffusion MRI
Yoshitaka Masutani, Yuuki Ichinoseki (Tohoku Univ.)
pp. 59 - 62

MI2023-51
Basic study of sharing medical contents in mixed reality space using head-mounted display for AR
Shunta Koga, Takaharu Yamazaki (SIT)
pp. 63 - 66

MI2023-52
Effects of differences in electrocardiogram gating methods in 4D flow MR imaging on hemodynamic analysis
Junna Okamoto, Atsushi Fukuyama (JHU), Haruo Isoda (SHGH), Hiroka Saito (JHU), Daiki Tabata (NGC), Kazushige Ichikawa, Takashi Mizuno (NUH), Satoshi Fujita (JHU)
pp. 67 - 68

MI2023-53
Experimental verification of "Scratch-PET" using phantom
Taiyo Ishikawa (Chiba Univ./QST), Yuma Iwao, Go Akamatsu, Sodai Takyu, Hideaki Tashima (QST), Takayuki Okamoto (Chiba Univ.), Taiga Yamaya (QST/Chiba Univ.), Hideaki Haneishi (Chiba Univ.)
pp. 69 - 72

MI2023-54
Production of fluid phantom used for accuracy verification of Hemodynamic Analysis -- Two types of simulated blood vessels made of different materials --
Saito Hiroka, Atsushi Fukuyama (JHU), Haruo Isoda (SHGH), Junna Okamoto (JHU), Takashi Mizuno (NUH), Syuuji Koyama, Masaki Kisimoto, Yuuto Honjyo (NUGS)
pp. 73 - 74

MI2023-55
[Short Paper] Circulatory Dynamics Analysis of Small Renal Tumors Utilizing Triple-phase Abdominal Contrast-Enhanced CT Imaging
Kaito Koshino, Dai Nishioka (Department of Science and Technology, Graduate School of Innovat), Yoshiki Kawata (Institute of Post-LED Photonics, Tokushima University), Yuuki Kobari (Tokyo Women's Medical University), Atsushi Ikeda (University of Tsukuba), Noboru Niki (Medical Science Institute)
pp. 75 - 76

MI2023-56
Conditional statistical shape models for multiple brain regions of human embryos
Nao Chikaarashi (TUAT), Tetsuya Takakuwa, Shigehito Yamada (Kyoto Univ.), Akinobu Shimizu (TUAT)
pp. 77 - 78

MI2023-57
[Short Paper] Using Label Uncertainty for Learning Cell Nuclei Type Classifier with Strongly Noisy Supervised Signals
Shingo Koide, Mauricio Kugler, Tatsuya Yokota (NIT), Koichi Ohshima, Hiroaki Miyoshi, Miharu Nagaishi (Kurume Univ.), Noriaki Hashimoto (RIKEN), Ichiro Takeuchi (Nagoya Univ.), Hidekata Hontani (NIT)
pp. 79 - 80

MI2023-58
Domain generalization with WSI feature
Yuki Shigeyasu (Kyushu Univ.), Shota Harada (Hiroshima City Univ.), Mariyo Kurata, Kazuhiro Terada, Naoki Nakazima (Kyoto Univ.), Akihiko Yoshizawa (Nara Medical Univ.), Hiroyuki Abe, Tetsuo Ushiku (Tokyo Univ.), Ryoma Bise (Kyushu Univ.)
pp. 81 - 84

MI2023-59
Effect of strain imaging and target shape in ultrasonic strain elastography
Akina Kudo, Ryo Takahashi, Yuri Nakaya, Ryohei Wada, Minoru Kikuchi (Japan Healthcare Univ.)
pp. 85 - 86

MI2023-60
3D shape reconstruction of colon with model-based unsupervised depth estimation
Natsu Onozaka (Nagoya Univ.), Hayato Itoh (Fukuoka Univ.), Masahiro Oda (Nagoya Univ.), Masashi Misawa (Showa Univ.), Yuichi Mori (UiO), Shin-ei Kudo (Showa Univ.), Kensaku Mori (Nagoya Univ.)
pp. 87 - 90

MI2023-61
A Study of LGE-MRI Image Preprocessing Methods for Machine Learning-Based Left Atrial Wall Segmentation
Kyohei Konishi, Shingo Araki, Ryo haraguchi (UOH), Kunihiko Kiuchi (KUH)
pp. 91 - 94

MI2023-62
Distance-informed adversarial learning for metal artifact reduction
Daisuke Shigemori, Megumi Nakao (Kyoto Univ.)
pp. 95 - 98

MI2023-63
Reflection noise estimation in photoacoustic image
Takehiro Yamane (Kyushu Univ.), Syota Harada (Hiroshima City Univ.), Itaru Tsuge, Susumu Saito (Kyoto Univ.), Ryoma Bise (Kyushu Univ.)
pp. 99 - 102

MI2023-64
(See Japanese page.)
pp. 103 - 105

MI2023-65
[Short Paper] Overfitting Prevention for PET Image Reconstruction using Early Stopping of Deep Image Prior based on Unbiased Risk Estimator
Kaito Matsumura, Hidekata Hontani (NIT), Muneyuki Sakata (TMIG), Yuichi Kimura (KDU), Tatsuya Yokota (NIT)
pp. 106 - 108

MI2023-66
A trial for improvement in image quality of cone-beam CT images using conditional diffusion model
Naruki Murahashi, Mitsuhiro Nakamura, Megumi Nakao (Kyoto Univ.)
pp. 109 - 112

MI2023-67
Segmentation of lung nodules in CT using an ensemble of multiple MTANN
Kentaro Someya, Shogo Kodera, Hiroko Oshibe, Jin Ze, Kenji Suzuki (Tokyo Tech)
pp. 113 - 116

MI2023-68
Robust segmentation approach over various training-to-test ratios for gross tumor volumes of lung cancer based on fused outputs
Yunhao Cui, Hidetaka Arimura (Kyushu Univ.), Yuko Shirakawa (National Hospital Organization Kyushu Cancer), Tadamasa Yoshitake (Kyushu Univ.), Yoshiyuki Shioyama (Saga HIMAT), Hidetake Yabuuchi (Kyushu Univ.)
pp. 117 - 118

MI2023-69
[Short Paper] Micro-Nodule Analysis of Coal miner pneumoconiosis and Silicosis
RentoNii (Tokushima Univ), Yoshiki Kawata (Tokushima Univ PLED), Yoshiki Otuka (Hokkaido Tyuou Rosai Hospital), Takumi Kishimoto (Okayama Rosai Hospital), Kazuto Ashizawa (Nagasaki Univ), Noboru Niki (Medical Inc)
pp. 119 - 121

MI2023-70
Automated musculoskeletal segmentation of torso CT images
Sanaa Amina Gourine, Mazen Soufi, Yoshito Otake (NAIST), Yuto Masaki (NAIST-PSP Corporation), Yoko Murakami, Yukihiro Nagatani, Yoshiyuki Watanabe (Shiga Univ), Keisuke Uemura (Osaka Univ), Masaki Takao (Ehime Univ), Nobuhiko Sugano (Osaka Univ), Yoshinobu Sato (NAIST)
pp. 122 - 126

MI2023-71
Multi-organ Segmentation from Abdominal CT Volumes based on Self-supervised Learning
Yaqi Yang, Chen Shen (Nagoya Univ.), Holger R. Roth (NVIDIA), Masahiro Oda, Yuichiro Hayashi (Nagoya Univ.), Kazunari Misawa (Aichi Cancer Center), Kensaku Mori (Nagoya Univ. ; NII)
pp. 127 - 130

MI2023-72
[Short Paper] Identification of follicle segmentation and subtype in a lymph node HE-stained image based on the set of cell nuclei
Mizuki Moribe, Tatsuya Yokota (NIT), Koichi Oshima, Hiroaki Miyoshi, Miharu Nagaishi (Kurume Univ.), Noriaki Hashimoto (RIKEN), Ichiro Takeuchi (NU), Hidekata Hontani (NIT)
pp. 131 - 132

MI2023-73
Teeth Segmentation from 3D Dental Model using Deep Learning and Statistical Shape Models
Hazuki Yamada, Kana Kono (Okayama Univ.), Shoko Miyauchi (Kyushu Univ.), Hiroshi Kamioka (Okayama Univ.), Ken'ichi Morooka (Kumamoto Univ.)
pp. 133 - 136

MI2023-74
Uncertainty-Boosted COVID-19 Lesion Segmentation Method from Chest CT Images
Tianyu Yang, Masahiro Oda, Tong Zheng, Yuichiro Hayashi, Kensaku Mori (Nagoya Univ)
pp. 137 - 140

MI2023-75
Extraction of phalanges regions from hand CT images using 3D U-Net
Madoka Okada, Takaharu Yamazaki, Yusei Arisawa (SIT), Kazuaki Tanaka (Neomedical), Keizo Fukumoto (Saitama Jikei)
pp. 141 - 144

MI2023-76
Alveoli segmentation from lung micro-focus X-ray CT volumes using 2D U-Net based on sheet-like structure
Daisuke Fukai (Nagoya Univ), Hirohisa Oda (University of Shizuoka), Yuichiro Hayashi, Tong Zheng, Shota Nakamura, Masahiro Oda, Kensaku Mori (Nagoya Univ)
pp. 145 - 148

MI2023-77
[Short Paper] Experimental validation of relationship between training data amount and accuracy of automatic annotation in developing image diagnosis AI
Koki Muranaka, Mitsutaka Nemoto, Yuichi Kimura, Takashi Nagaoka, Katsuhiro Mikami, Yukako Nakamae (Kindai Univ.), Takeharu Yoshikawa (Tokyo Univ.)
pp. 149 - 151

MI2023-78
Multi-Organ Segmentation from 3D Abdominal CT Images Using Blood Vessel Enhanced Images and AutoML
Mana Ohno, Shen Chen (Nagoya Univ.), Holger R. Roth (NVIDIA Corp.), Masahiro Oda, Yuichiro Hayashi (Nagoya Univ.), Kazunari Misawa (Aichi Cancer Center), Kensaku Mori (Nagoya Univ.)
pp. 152 - 155

MI2023-79
Computerized Classification Method for Molecular Subtypes of Low-grade Glioma on Brain MRI Images using Multi-scale 3D CNN with Channel and Spatial Attention Mechanism
Shimpei Kobayashi, Akiyoshi Hizukuri, Ryohei Nakayama (Ritsumeikan Univ.), Kaori Kusuda (THCU), Ken Masamune (TWMU), Yoshihiro Muragaki (Kobe Univ.)
pp. 156 - 157

MI2023-80
Anomaly Detection for Lung CT Images Using VQ-VAE with SVDD
Zhihui Gao, Ryohei Nakayama, Aikiyoshi Hizukuri (Ritsumeikan Univ.), Shoji Kido (Oosaka Univ.)
pp. 158 - 159

MI2023-81
Attenuation Correction of Bone Scintigraphy Using pix2pix
Takaki Ojima, Ryohei Nakayama, Akiyoshi Hizukuri (Ritsumeikan Univ.), Yoya Tomita, Yasutaka Ichikawa, Hajime Sakuma (Mie Univ.)
pp. 160 - 161

MI2023-82
Liver dynamics estimation method based on displacement information using MR images
Kakeru Shiraishi, Daisuke Kokuryo, Toshiya Kaihara, Etsuko Kumamoto (Kobe Univ.)
pp. 162 - 165

MI2023-83
Pathological image features for prediction of disease progression of lung cancer patients who received radiation therapy
Jin Yu, Hidetaka Arimura, Takeshi Iwasaki, Takumi Kodama, Cui YunHao, Yoshinao Oda (Kyushu Uni.)
pp. 166 - 168

MI2023-84
Zero-shot oral cytology classification: Exploring text and image features with BiomedCLIP
Kyungrok Hong, Keita Takeda (Nagasaki Univ.), Eiji Mitate (Kanazawa Medical Univ.), Tomoya Sakai (Nagasaki Univ.)
pp. 169 - 172

MI2023-85
Prediction of Cancer Relapse for Non-Small Cell Lung Cancer Patients Using Clinical and Imaging Features Before Stereotactic Ablative Radiotherapy
Takumi Kodama, Hidetaka Arimura (Kyushu Univ.), Yuko Shirakawa (Kyushu Cancer Center), Kenta Ninomiya (Sanford Burnham Prebys Med. Discov. Inst.), Tadamasa Yoshitake (Kyushu Univ.), Yoshiyuki Shioyama (SAGA HIMAT)
pp. 173 - 175

MI2023-86
Predicting future cognitive decline from Dual-task
Tomoya Noguchi, Shuqiong Wu, Fumio Okura, Yasushi Makihara, Yasushi Yagi (Osaka Univ.)
pp. 176 - 179

MI2023-87
Dual-task and EEG based Detection of Cognitive Impairment
Saki Watanabe, Shuqiong Wu, Fumio Okura, Yasushi Makihara, Manabu Ikeda, Shunsuke Sato, Maki Suzuki, Yuto Satake, Daiki Taomoto, Yasushi Yagi (Osaka Univ.)
pp. 180 - 183

MI2023-88
[Short Paper] Representations obtained by self-supervised learning of hierarchical ViT to discriminate between benign and malignant breast tumors
Akiomi Ishikawa (NIT), Kouji Arihiro (HIrosima Univ), Hidekata Hontani (NIT)
pp. 184 - 185

MI2023-89
Image tile selection algorithm for Visualization Of Information Density to evaluate cancer-likeness
Toshiki Kindo, Kenitirou Tada, Mahiro Ookawara, Kaira Daidou (KIT)
pp. 186 - 189

Note: Each article is a technical report without peer review, and its polished version will be published elsewhere.


The Institute of Electronics, Information and Communication Engineers (IEICE), Japan